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1 Extended Comparative Study
1.0.1 Theoretical comparison. We formally review how current
procedural approaches generate noise, and how they comply with
the properties (a) to (f) described in the paper section 3. Lattice,
sparse convolution, spectral (LRP) and tile-based (RTB) noises (see
survey section 2), share three common characteristics:

• An infinite set of discrete points p𝑘 derived from a periodic
tesselation of R𝑛 using space-filling polytopes. The p𝑘 are
either the polytope vertices (as for lattice [Perlin 1985, 2001],
LRP [Gilet et al. 2014], RTB [Heitz and Neyret 2018] noises)
or points randomly generated inside the polytopes (as for
sparse convolution noises [Lewis 1984, 1989] [VanWijk 1991]
[Galerne et al. 2012, 2017; Lagae et al. 2009] [Cavalier et al.
2019]).

• A spatial kernel 𝐾 (x, p𝑘 ) that can be an analytic function
(a Gaussian [Lewis 1989], Gabor [Lagae et al. 2009], sinc
function [Gilet et al. 2012]), or an image [Galerne et al. 2017;
Heitz and Neyret 2018], or a constant random value [Perlin
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1985]. Usually, 𝐾 applies in one way or another a pseudo-
random number generator (PRNG), with its seed set according
to the p𝑘 to provide randomness, yet ensuring determinism.

• A weighted sum. The weights may be constant or involve an
interpolation function𝑤 further depending on offsets x − p𝑘 ,
as for RTB [Heitz and Neyret 2018] and lattice noises [Perlin
1985, 2001].

We unify them under the term point-based noises N𝑝 , and define
them with a single common formula:

N𝑝 (x) =

𝑛𝑘∑︁
𝑘=1

𝑤𝑘 (x)𝐾𝑘 (x) (1)

Properties of N𝑝 : Equation 1 is continuous (Prop.a) if 𝑤𝑘𝐾𝑘 is
continuous, a property of analytic functions but not of images, unless
reconstructed with filters, which might however introduce artifacts.
Sparse convolution can produce discontinuities when infinite ker-
nels are clamped, like Gaussians. These are typically imperceptible,
provided the variance of the Gaussians is chosen correctly w.r.t. the
size of the underlying polytopes. Therefore grid size and Gaussian
variance are closely linked with Lewis, Gabor and Phasor noises.
Computational complexity (Prop.b) is proportional to 𝑛𝑘 and remains
constant if 𝑛𝑘 is bounded and 𝑤𝑘𝐾𝑘 operates in Θ(1). Polytopes
are specifically used to constrain 𝑛𝑘 . Memory cost (Prop.c) depends
only on 𝐾𝑘 , as polytopes and p𝑘 are never explicitly stored in a
procedural setup. Spatial unboundedness (Prop.e) arises from peri-
odic polytopes, while pseudo-random number generation (PRNG)
ensures non-periodicity (Prop.d). It is worth noting that the inher-
ent periodicity of PRNGs is typically not a concern, as their period
is vastly larger than the domain over which the noise is usually
applied. When 𝐾𝑘 depicts visually salient characteristics and 𝑛𝑘 is
small, repetition artifacts may occur, which happens for example
when RTB [Heitz and Neyret 2018] is diverted to generate structured
textures instead of noise. Higher dimensions (Prop.e) are obtained
by extending the dimension of the polytopes and the 𝐾𝑘 , which
is straightforward with functions, like Gaussians. Random access
(Prop.f) is supported, since all p𝑘 and𝐾𝑘 are completely independent.

Concerning spectral control (Prop.g): Equation 1 defines noise by
convolution with a point distribution, reducing to a sum due to
sparsity. The Fourier Transform (FT) of N𝑝 is therefore a product
between F (𝑤𝑘𝐾𝑘 ) and F (p𝑘 ), with the product 𝑤𝑘𝐾𝑘 becoming
a convolution in spectral domain. For lattice noises [Perlin 1985],
𝐾𝑘 is a constant, so the PSD only depends on 𝑤𝑘 and p𝑘 , making
spectral control difficult. For other noises, spectral control is mainly
linked to F (𝐾𝑘 ), though the PSD also depends on p𝑘 and 𝑤𝑘 . Be-
cause randomly weighted Poisson point processes correspond to a
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white noise approximation, whose theoretical FT is constant, sparse
convolution noise using a spectrally controllable kernel (Gabor [La-
gae et al. 2009], Texton [Galerne et al. 2017]), achieve strong spectral
control. RTB [Heitz and Neyret 2018] and LRP [Gilet et al. 2014]
noises also allow spectral control, but may introduce, generally
marginal, interferences due to interpolation function 𝑤𝑘 and the
regularity of the p𝑘 .

Figures 1 to 4 illustrate how two key parameters affect the visual
quality of solid Gabor and wave noises. For Gabor noise, the number
of kernels (n) impacts both quality and framerates, while lattice size
(given as the ratio in relation to the unit) primarily influences quality.
Similarly, for wave noise, the number of directions (n) affects both
quality and framerates, while average slice thickness (given as the
ratio in relation to the unit) predominantly affects quality. The top
left is the reference noise 3D texture computed by inverse 3D FFT.
It is a filtered white noise, where the frequency band is shown as a
bar chart.

Though framerates are provided as a general performance indica-
tor in this Figure, they may vary during interactive manipulations.
We refer to the paper’s performance table for a more objective per-
formance analysis. The Figures mainly illustre the effect of these
parameters on quality.
Figure 5 extends the analysis with a quantitative 2D spectral ac-

curacy evaluation of wave noise, showing error trends with respect
to direction count and slice thickness. Errors are L2 norms averaged
over non-zero frequencies. The reference (computed by inverse FFT)
is shown top-left, and average PSDs were estimated from 16 random
patches, as wave noise is unbounded by design.

2 Additional results
In this section we show additional results concerning transitions
between wave noises, more anisotropic, non-Gaussian and cellular
results, and more results concerning applications to material and
color texture modeling and animation.

2.1 Transition results
Our noise relies on parameters that can be linearly interpolated to
create smooth and consistent transitions, as illustrated in Figure 6.
We show transitions of scale, transitions from Gaussian to ridged
and Phasor noises, a transition from curl noise to cellular noise and
transitions concerning waves with different frequency contents.
Transitions are limited to real-valued parameters and require

the use of consistent wave combination operators. For instance,
smoothly transitioning between our cellular structure, which relies
on the min operator, and Gaussian noise, which uses a sum, presents
a challenge not addressed in the paper.

2.2 More results
Our model combines waves oriented in random directions. When
certain directions are favoured, it creates anisotropic patterns. More
examples than presented in the paper are shown in Figure 7
Our style transfer functions are generated from PBR material

maps. We generate them using a cube map, which is then projected
on a sphere for indexation according to the normal. The same wave
noise can produce diverse materials by applying different styles.

Figure 8 demonstrates this with a wave noise, resembling a marble
structure. In this example, the style transfer functions combine two
styles, as shown on the left.

Figure 9 illustrates the use of wave noise to guide an optimization-
based texture synthesis approach, as presented in [Guehl et al. 2020]
and named by the authors “semi-procedural” textures. Our approach
likewise allows us to define such semi-procedural textures.
Figure 10 illustrates material animation on four examples, com-

pleting the results presented in the paper and video : the glowing
stone cooling down (with additional time steps), moss slowly grow-
ing on a rock (with additional time steps), some frames of snow
melting and a climbing plant, spreading over a tree trunk, as pre-
sented in the video.

3 Model parameters
This section details wave noise parameters. It mainly consists of a
collection of screenshots illustrating how these parameters can be
adjusted through our GUI and affect visual results. The Table below
summarizes wave noise parameters.

Parameters of N : R3 × R → C

𝑁𝜔 = 𝑁𝜑𝑁𝜃 (number of directions)
𝑇 (𝑥) : [0, 1] → R2 (precomputed table)
Op ∈ { +, min, stack} (wave combination)

W (slice thickness)
F (normalization factor)

𝑣 (wave speed)

Figure 11 is a crop of a GUI, which proposes additional parameters
and controls that we grouped as follows:
Spatial Transformation (Figure 12). These parameters affect

3D noise position and scale through translation (X, Y, Z) and global
zoom factor. We remind the reader that procedural wave noise is
unbounded in space, but for ease of use we limited the ranges in the
GUI. These transormations are applied to x before calling N(x, 𝑡).
Quality versus Framerates. Figure 13 shows how setting the

slice thickness (parameter W), and the number of directions𝑁𝜔 affect
the results. In the GUI, we reduced to a single value, called 𝑁𝐷𝑖𝑟 ,
the actual numbers 𝑁𝜑 and 𝑁𝜃 , by fixing 𝑁𝜃 = 4 and 𝑁𝜑 = 𝑁𝐷𝑖𝑟/4.

Frequency Range (Figure 14). The frequency bounds (FreqMin,
FreqMax) allow users to define a global band-pass filter. Outside this
range, amplitudes are null. These parameters are used to precompute
𝑇 . It affects only Gaussian noises (isotropic and anisotropic). The
parameter anisotropy spread affects anisotropic noises, as described
below.

Waveforms andNoise types allow users to choose from various
preset waveforms, wave combinations (parameter Op), and degrees
of anisotropy:

• Figure 15 illustrates isotropic Gaussian noises characterized
by amplitude variations within the previous range [FreqMin,
FreqMax]. We display the implemented amplitude variation
presets (as bar charts), along with the corresponding real part
of the precomputed complex-valued wave stored in the table
𝑇 . For these noises, Op = + (waves are added).
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601fps, n=27, 1:1

598fps, n=27, 1:2

596fps, n=27, 1:4

591fps, n=27, 1:8

557fps, n=54, 1:1

549fps, n=54, 1:2

553fps, n=54, 1:4

556fps, n=54, 1:8

539fps, n=135, 1:1

542fps, n=135, 1:2

531fps, n=135, 1:4

540fps, n=135, 1:8

497fps, n=270, 1:1

491fps, n=270, 1:2

493fps, n=270, 1:4

489fps, n=270, 1:8

462fps, n=405, 1:1

459fps, n=405, 1:2

461fps, n=405, 1:4

453fps, n=405, 1:8

Fig. 1. Evaluating Gabor sparse convolution noise according to total number of kernels and grid size. Top is reference obtained by inverse 3D FFT. PSD is
isotropic. The bar chart shows energy variation according to frequency. It corresponds to a perfectly band-pass filtered white noise.

• Figure 16 illustrates anisotropic Gaussian noises, also char-
acterized by amplitude variations within the previous range
[FreqMin, FreqMax]. Here, we implemented two kinds of
anisotropic noises: one-directional or two-directional. The
distinction from the previous isotropic noises lies in how
wave directions are randomly selected. In the one-directional
anisotropic case:
(𝛼, 𝛽) ≔

(
𝛼0 + spread

4 · 𝜋 (𝑖+rnd( ) )
𝑁𝜑+1 , arccos

(
cos(𝛽0) + spread

4
𝑗+rnd( )
𝑁𝜃+1

))
,

(𝛼0, 𝛽0) being the main anisotropy direction. For the two-
directional case, we define a second direction (𝛼1, 𝛽1), and
equally distribute the 𝑁𝐷𝑖𝑟 randomly drawn directions over
these two directions. The parameter anisotropy spread corre-
sponds to the value of spread in the previous formula.The
smaller its value the closer randomly drawn directions match
(𝛼0, 𝛽0).
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508fps, n=54, 1:1 / 1:2

504fps, n=54, 1:2 / 1:4

502fps, n=54, 1:4 / 1:8

498fps, n=54, 1:8 / 1:16

440fps, n=108, 1:1 / 1:2

439fps, n=108, 1:2 / 1:4

435fps, n=108, 1:4 / 1:8

435fps, n=108, 1:8 / 1:16

368fps, n=270, 1:1 / 1:2

365fps, n=270, 1:2 / 1:4

362fps, n=270, 1:4 / 1:8

364fps, n=270, 1:8 / 1:16

310fps, n=540, 1:1 / 1:2

308fps, n=540, 1:2 / 1:4

304fps, n=540, 1:4 / 1:8

306fps, n=540, 1:8 / 1:16

231fps, n=810, 1:1 / 1:2

229fps, n=810, 1:2 / 1:4

225ps, n=810, 1:4 / 1:8

223fps, n=810, 1:8 / 1:16

Fig. 2. Evaluating Gabor sparse convolution noise according to number of kernels and grid size. Top is reference obtained by inverse 3D FFT. PSD is isotropic
with two distinct energy steps. For best performance, we used two grids with different sizes separating low and high frequency components of the noise.

• Figure 17 shows the preset collection of waveforms that we
used to generate examples of non-Gaussian noises. These
noises also use a sum of waves ( Op is set to +). These waves
are characterized by spikes whose thickness can bemodulated
with a parameter nongauss wave sharpness.

• Figure 18 shows cellular noises controlled by subdivision prob-
ability and maximum recursion depth, as available through

Cellular Noise Settings. These noises do not add waves,
but use the𝑚𝑖𝑛 and 𝑠𝑡𝑎𝑐𝑘 (for random polytopes drawing)
combination operation.

Post-Processing and Display define the value that is rendered
(real, imaginary, modulus or argument), scaled by contrast, which
we use to derive the normalization factor 𝐹 .

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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792fps, n=4, 1:1

787fps, n=4, 1:2

793fps, n=4, 1:4

775fps, n=4, 1:8

767fps, n=16, 1:1

762fps, n=16, 1:2

761fps, n=16, 1:4

760fps, n=16, 1:8

743fps, n=32, 1:1

744fps, n=32, 1:2

731fps, n=32, 1:4

727fps, n=32, 1:8

717fps, n=48, 1:1

711fps, n=48, 1:2

708fps, n=48, 1:4

710fps, n=48, 1:8

693fps, n=64, 1:1

689fps, n=64, 1:2

678fps, n=64, 1:4

681fps, n=64, 1:8

676fps, n=64, 1:16764fps, n=4, 1:16 760fps, n=16, 1:16 719fps, n=32, 1:16 699fps, n=48, 1:16

Fig. 3. Evaluating wave noise according to number of directions (n) and slice thickness. Top is reference obtained by inverse 3D FFT. PSD is isotropic. The bar
chart shows energy variation according to frequency. It corresponds to a perfectly band-pass filtered white noise.
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Temporal and Animation Controls add motion to the noise
using a timeline position and wave speed (parameter 𝑣).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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790fps, n=4, 1:1 770fps, n=16, 1:1 745fps, n=32, 1:1 716fps, n=48, 1:1 691fps, n=64, 1:1

790fps, n=4, 1:2 758fps, n=16, 1:2 748fps, n=32, 1:2 717fps, n=48, 1:2 681fps, n=64, 1:2

789fps, n=4, 1:4 760fps, n=16, 1:4 729fps, n=32, 1:4 705fps, n=48, 1:4 675fps, n=64, 1:4

770fps, n=4, 1:8 754fps, n=16, 1:8 734fps, n=32, 1:8 714fps, n=48, 1:8 683fps, n=64, 1:8

671fps, n=64, 1:16769fps, n=4, 1:16 761fps, n=16, 1:16 723fps, n=32, 1:16 692fps, n=48, 1:16

Fig. 4. Evaluating wave noise according to number of directions (n) and slice thickness. Top is reference obtained by inverse 3D FFT. PSD is isotropic with two
distinct energy steps.
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n=4, no slicing n=10, no slicing n=16, no slicing n=22, no slicing n=28, no slicing

n=4, 1:1 n=10, 1:1 n=16, 1:1 n=22, 1:1 n=28, 1:1

n=4, 1:4 n=10, 1:4 n=16, 1:4 n=22, 1:4 n=28, 1:4

n=4, 1:8 n=10, 1:8 n=16, 1:8 n=22, 1:8 n=28, 1:8

n=28, 1:16n=4, 1:16 n=10, 1:16 n=16, 1:16 n=22, 1:16

Fig. 5. Quantitative wave noise evaluation according to number of directions (n) and slice thickness. Top left is reference obtained by inverse 2D FFT.
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Fig. 6. Smooth transitions between wave noises from one cube corner to the opposite. The transition is for the entire volume, not only on the top plane.
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10 • Guehl, P. et al

Fig. 7. Examples of anisotropic wave noises generated by favouring certain directions.
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Fig. 8. Using non-Gaussian wave noise (top) to design materials (right column) from style transfer functions. On the left we applied the styles on cubes. No
UV coordinates are required, neighter for applying the styles, nor for the wave noise, the latter being 3D.
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Fig. 9. Data-driven by-example color texture synthesis using wave noise (left column) as “guidance”. Input textures are shown on top row. The merging of a
procedural model with data-driven synthesis was called “semi-procedural” texture synthesis in [Guehl et al. 2020]. The input textures on top are from Guehl et
al’s database, as provided on their git repository.
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t i m e

Fig. 10. Completing the paper’s animation results with additional frames.
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Fig. 11. Initial parameters and corresponding noise result.

X=0, Y=0, Z=0
Zoom=0.2

X=2.0, Y=0, Z=0
Zoom=0.2

X=4.0, Y=0, Z=0
Zoom=0.2

X=6.0, Y=0, Z=0
Zoom=0.2

X=0, Y=0, Z=0
Zoom=0.1

X=0, Y=0, Z=0
Zoom=0.3

X=0, Y=0, Z=0
Zoom=0.6

X=0, Y=0, Z=0
Zoom=1.5

Fig. 12. Spatial Transformation controls. Top row: increasing X from left to right. Bottom row: increasing Zoom from left to right.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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NDir=4
Slice size=1

NDir=12
Slice size=1

NDir=24
Slice size=1

NDir=60
Slice size=1

NDir=8
Slice size=2

NDir=8
Slice size=4

NDir=8
Slice size=6

NDir=8
Slice size=8

Fig. 13. Quality versus Framerates controls. Top row: increasing NDir from left to right. Bottom row: increasing Slice size from left to right.

Wave type=noise-blue
Operator=Aniso Sum - one direction

FreqMin=0.251, FreqMax=1
aniso wave dir width=0.0

Wave type=noise-blue
Operator=Aniso Sum - one direction

FreqMin=0.251, FreqMax=1
aniso wave dir width=0.25

Wave type=noise-blue
Operator=Aniso Sum - one direction

FreqMin=0.251, FreqMax=1
aniso wave dir width=0.5

Wave type=noise-blue
Operator=Aniso Sum - one direction

FreqMin=0.251, FreqMax=1
aniso wave dir width=0.75

Wave type=noise-brown
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.5

Wave type=noise-brown
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=1.0

Wave type=noise-brown
Operator=Isotropic Sum

FreqMin=0.152, FreqMax=1.0

Wave type=noise-brown
Operator=Isotropic Sum

FreqMin=0.251, FreqMax=1.0

Fig. 14. Frequency Range controls. Top row: increasing aniso wave dir width from left to right. Bottom row: effect of varying FreqMin and FreqMax from left
to right to control a band-pass filter.
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Wave type=noise-blue
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.5

Wave type=noise-blue
Operator=Isotropic Sum

FreqMin=0.125, FreqMax=0.75

Wave type=noise-brown
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=1

Wave type=noise-two ampli levels
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.5

Wave type=noise-gaussian
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.25

Wave type=noise-gaussian
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.5

Wave type=noise-white
Operator=Isotropic Sum

FreqMin=0.016, FreqMax=0.25

Wave type=noise-white
Operator=Isotropic Sum

FreqMin=0.125 FreqMax=0.25

Fig. 15. Waveforms and Noise types controls: Isotropic Gaussian noises.

Wave type=noise-blue
Operator=Aniso Sum - one direction

FreqMin=0.016, FreqMax=0.5

Wave type=noise-blue
Operator=Aniso Sum - two directions

FreqMin=0.125, FreqMax=0.75

Wave type=noise-brown
Operator=Aniso Sum - one direction

FreqMin=0.016, FreqMax=1

Wave type=noise-gaussian
Operator=Aniso Sum - two directions

FreqMin=0.016, FreqMax=0.5

Fig. 16. Waveforms and Noise types controls: Anisotropic Gaussian noises.
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Wave type=nongauss-crystal1
Operator=Isotropic Sum

Contrast=0.5

Wave type=nongauss-crystal1
Operator=Aniso Sum - two directions

Contrast=0.5

Wave type=nongauss-web
Operator=Isotropic Sum

Contrast=0.9

Wave type=nongauss-web
Operator=Aniso Sum - two directions

Contrast=0.9

Wave type=nongauss-crystal2
Operator=Isotropic Sum

Contrast=0.2

Wave type=nongauss-marble
Operator=Isotropic Sum

Contrast=0.7

Wave type=nongauss-scratches
Operator=Isotropic Sum

Contrast=0.9

Wave type=nongauss-smoothcell
Operator=Isotropic Sum

Contrast=0.4

Fig. 17. Waveforms and Noise types controls: Non-Gaussian noises.

Operator=Random polytopes
STIT Probability=0.0
STIT Recursions=1

Operator=Cellular
STIT Probability=0.0
STIT Recursions=1

Operator=Hyperplane
STIT Probability=0.0
STIT Recursions=1

Operator=Reversed Cellular
STIT Probability=0.0
STIT Recursions=1

Operator=Reversed Cellular
STIT Probability=0.5
STIT Recursions=5

Operator=Reversed Cellular
STIT Probability=0.9
STIT Recursions=3

Operator=Reversed Cellular
STIT Probability=0.9
STIT Recursions=5

Operator=Reversed Cellular
STIT Probability=0.96

STIT Recursions=5

Fig. 18. Waveforms and Noise types controls: Cellular noises. Here, 𝑁𝐷𝑖𝑟 = 8 for all examples. We show the corresponding waveforms. These are directly
implemented as functions and not precomputed into table𝑇 , given their simplicity.
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