
HAL Id: hal-05089067
https://ip-paris.hal.science/hal-05089067v1

Submitted on 28 May 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Dimensional Procedural Wave Noise
Pascal Guehl, Rémi Allègre, Guillaume Gilet, Basile Sauvage, Marie-Paule

Cani, Jean-Michel Dischler

To cite this version:
Pascal Guehl, Rémi Allègre, Guillaume Gilet, Basile Sauvage, Marie-Paule Cani, et al.. Multi-
Dimensional Procedural Wave Noise. ACM Transactions on Graphics, 2025, SIGGRAPH, 44 (4),
�10.1145/3730928�. �hal-05089067�

https://ip-paris.hal.science/hal-05089067v1
https://hal.archives-ouvertes.fr

Multi-Dimensional Procedural Wave Noise
PASCAL GUEHL, LIX, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, France
RÉMI ALLÈGRE, ICube, Université de Strasbourg, CNRS, France
GUILLAUME GILET, Université de Sherbrooke, Canada
BASILE SAUVAGE, ICube, Université de Strasbourg, CNRS, France
MARIE-PAULE CANI, LIX, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, France
JEAN-MICHEL DISCHLER, ICube, Université de Strasbourg, CNRS, France

RGBA

Styles

Fig. 1. Wave noise is a new procedural noise that encompasses sparse convolution procedural noises like resp. Lewis, Gabor, and Phasor noises providing more
efficient computation in higher dimensions (top row, resp. left to center). It also introduces various novel patterns (top row, two rightmost images), including a
new cellular noise distinct from Worley’s cellular approach (right most). Retaining essential properties (infinite, resolution independent, compact [1KB per 3D
example], fast to compute, and GPU-friendly), it supports diverse applications in Computer Graphics. Two examples are demonstrated: modeling volumetric
materials with RGBA transfer functions (middle row), and surface materials mapped on arbitrary geometry with no UV coordinates using style transfer
functions (bottom row). Transfer functions are on the left.

While precise spectral control can be achieved through sparse convolution,
corresponding state of the art noise models are typically too expensive
for solid noise. We introduce an alternative, wave-based procedural noise

Authors’ Contact Information: Pascal Guehl, LIX, Ecole Polytechnique, CNRS, Institut
Polytechnique de Paris, France, pascal.guehl@polytechnique.edu; Rémi Allègre, ICube,
Université de Strasbourg, CNRS, France, remi.allegre@unistra.fr; Guillaume Gilet,
Université de Sherbrooke, Canada, Guillaume.Gilet@USherbrooke.ca; Basile Sauvage,
ICube, Université de Strasbourg, CNRS, France, sauvage@unistra.fr; Marie-Paule Cani,
LIX, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, France, marie-paule.
cani@polytechnique.edu; Jean-Michel Dischler, ICube, Université de Strasbourg, CNRS,
France, dischler@unistra.fr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/8-ART
https://doi.org/10.1145/3730928

model, fast enough to be used in any dimension. We express the noise in the
spectral domain and then apply an inverse Fourier transform (FT), requiring
the computation of a multidimensional integral. Our contribution is a novel,
efficient way to perform this computation, using a sum of precomputed
complex-valued hyperplanar wave-functions, oriented in random directions.
We show that using suitable wave profiles and combination operators, our
model is able to extend to 3D a number of Gaussian and non-Gaussian
noises, including Gabor, by-example and Phasor noises, as well as generate
novel cellular noises. Our versatile and controllable solid noise model is very
compact, a key feature for complex power spectrum and animated noises.
We illustrate this through the design of 2D, 3D, and 3D+t materials using
color, transparency and style transfer functions.

CCS Concepts: • Computing methodologies → Texturing.

Additional Key Words and Phrases: Procedural noise

ACM Reference Format:
Pascal Guehl, Rémi Allègre, Guillaume Gilet, Basile Sauvage, Marie-Paule
Cani, and Jean-Michel Dischler. 2025. Multi-Dimensional Procedural Wave

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0002-6387-6355
HTTPS://ORCID.ORG/0000-0002-7780-9284
HTTPS://ORCID.ORG/0000-0002-9973-1772
HTTPS://ORCID.ORG/0009-0008-1004-744X
HTTPS://ORCID.ORG/0000-0001-7752-9031
HTTPS://ORCID.ORG/0000-0003-4444-2719
https://orcid.org/0000-0002-6387-6355
https://orcid.org/0000-0002-7780-9284
https://orcid.org/0000-0002-9973-1772
https://orcid.org/0009-0008-1004-744X
https://orcid.org/0000-0001-7752-9031
https://orcid.org/0000-0003-4444-2719
https://doi.org/10.1145/3730928

2 • Guehl, P. et al

Noise. ACM Trans. Graph. 44, 4 (August 2025), 15 pages. https://doi.org/10.
1145/3730928

1 Introduction
Procedural noise has long been a key element in Computer Graphics
pipelines [Ebert et al. 2003]. Noise functions aim to define resolution-
free, unbounded stochastic fields, then used as a primitive tool for
adding imperfections to an object’s appearance or shape at low
memory and computation cost. For example, a rough set of voxels
can be turned into a compelling cloudscape by combining it with
volumetric noises [Schneider 2023]. In this context, procedural noise
can be distinguished from the more general notion of texture, since
it is expected to respect a number of specific mathematical and com-
putational properties. Some are enumerated in [Ebert et al. 2003],
like for instance a high degree of randomness (i.e. no periodicity
and no visual repetitions), perfect parallel computing (i.e. random
access at constant complexity), unlimited spatial extent, extreme
compactness and no fixed resolution, as opposed to images. For some
applications, control of the statistical or spectral characteristics of
the generated noise may be required. Unifying all these properties
in the case of solid (full 3D) noise remains a challenge. Most recent
work was carried out solely in the 2D case, while certain core pro-
cedural properties, including easy extension to higher dimensions
and resolution independence, have been skipped in favor of either
high computational efficiency [Heitz and Neyret 2018] or ease of
use [Maesumi et al. 2024]. Many applications require noise to be 3D
and furthermore animated, like the turbulences seen in clouds or
in fluids [Bridson et al. 2007]. Some models may even require an
additional noise dimension (4D for example), related to additional
physical parameters. Turbulences seen in gazes may for example
exhibit different frequency spans according to temperature.

We introduce a new paradigm for procedural noise synthesis that
allows spectral control and can be implemented as a GPU shader
program with little input data, while being easy to extend to 3D,
and higher, where it preserves its efficiency as well as the above-
mentioned procedural properties. Fundamentally, we replace the
widely used sparse convolution operation by the use of superpo-
sitions of randomly oriented hyperplanar waves. This leads to a
mathematical formulation where not only most of the current proce-
dural noises can be reproduced, including Lewis, Gabor and Phasor,
but also where a variety of other noise-like functions, including new
categories of anisotropic patterns (next-to-last image on the right
of top of Figure 1) and cellular noises, structurally distinct from
Worley’s approach [Worley 1996] (last image on the right of top of
Figure 1 and last row).

Our algorithm generates noise using non-periodic, complex-valued
hyperplanarwaves oriented randomly in𝑛-dimensional space. These
waves are derived from a spectral-domain noise definition, where
noise is computed in the spatial domain using an inverse Fourier
Transform (FT). We efficiently compute the continuous inverse
FT integral, by approximating it using a combined Monte Carlo
(discrete sum) and pre-computation strategy. Randomness is intro-
duced through random phases and wave orientations. Efficiency is
achieved by precomputing the waves and storing them in compact
1D tables, enabling fast, parallel, on-the-fly computation with mini-
mal memory use, even in higher dimensions. Our approach further

makes it possible to obtain noises with an arbitrary power spectrum,
by using different wave profiles along the different directions. Com-
plex power spectral densities increase the number of waves to be
stored and pre-computed, but the memory footprint remains a small
fraction of that needed to store, for example, full 3D tiles. By modify-
ing the spatial profile of the waves, it becomes possible to generate
new types of non-Gaussian random fields, which are beyond what
can be produced with Gabor and Phasor noises. By stacking waves
with a Heaviside step-function profile, our approach can be used,
moreover, to partition space into random polytopes. This permits
the creation of new cellular noise functions distinct from Worley’s
cellular approach [Worley 1996]. We show that a recursive defi-
nition also allows us to imitate STIT-like (STable under Iterated
Tessellation) [Cowan 2010] cellular patterns, while preserving all
procedural characteristics.
Our noise can seamlessly integrate as a new node in modern

procedural material modeling systems based on acyclic directed
graphs, such as Substance andMari. It enables the creation of infinite,
non-repetitive, and resolution-free volumetric materials using 1D
RGBA transfer functions, as shown in second row of Figure 1. It can
also be used to generate unbounded surface materials, which can be
mapped without the need for UV coordinates, using style transfer
functions inspired by [Bruckner and Gröller 2007] (see examples
Figure 1 bottom row). Materials may also be animated. We show
examples, like rock freezing, cooling and progressive propagation
of moss.

2 Related work
We review noise generation algorithms, focusing on procedural
approaches, which we classify into 4 categories based on the com-
putational model they are based on. We then discuss procedural
texture basis functions (TBFs), which resemble, but are not exactly,
noise in the strict sense of Gaussian random processes. Finally, we
also briefly discuss texture-based non-procedural noises.
Lattice noise, based on interpolating values on lattices, is a

foundational method for procedural textures [Ebert et al. 2003].
Perlin noise [Perlin 1985] uses hash-coded random vectors at integer
lattice vertices, later improved with simplicial complexes [Perlin
2001] for better scaling in higher dimensions. [Taylor et al. 2021]
reduces axial artifacts by generating random unit vectors from prime
numbers. However, lattice noises lack spectral control and may
suffer from visual artifacts depending on the interpolation method.
Sparse convolution noise [Lewis 1984, 1989] was introduced

to get rid of interpolation artifacts of lattice noise. It uses random
Poisson point processes to sum Gaussian kernels. An integer lattice
was used to approximate the Poisson point process, and accelerate
the search for closest points, essential in convolution computation.
Anisotropic kernels were proposed to generate 1D "shot noise" and
2D “spot noise” [Van Wijk 1991]. Gabor noise [Galerne et al. 2012;
Lagae et al. 2009] relied on phase-augmented kernels for spectral
control, whereas a sinc kernel was used in [Gilet et al. 2012] to
define almost ideal box filters in the spectral domain.

Texton noise [Galerne et al. 2017], stores the kernel in the form of
a texture map, enabling control of the power spectral density (PSD)
of the noise. Lastly, local spot-noise [Cavalier et al. 2019] defines

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3730928
https://doi.org/10.1145/3730928

Multi-Dimensional Procedural Wave Noise • 3

kernels as sums of anisotropic Gaussian functions. Despite these
improvements, sparse convolution noises remain computationally
intensive because of the search of closest points. This becomes a
strong bottleneck when moving up to higher spatial dimensions.
Fourier series have a long history in Computer Graphics. In

the early eighties, Gardner [Gardner 1985] introduced sums of
cosines with phases modulated by other cosines to define turbu-
lent clouds. Sakas [Sakas 1993] used spectral synthesis to model
turbulent gaseous phenomena. LRP noise [Gilet et al. 2014] relied
on “local” Fourier series, defined by cosines with random phases.
Like these models, our work draws inspiration from the Fourier
transform.

Tiling approaches for procedural noise synthesis have recently
gained popularity. They arrange noise tiles similar to patch-based
texture synthesis [Barnes and Zhang 2017]. Texton-noise [Galerne
et al. 2017], akin to bombing textures [Fernando et al. 2004; Schachter
and Ahuja 1979], sums randomly dropped tiles rather than stacking
them. Wavelet noise [Cook and DeRose 2005] uses pre-computed,
band-pass filtered white noise tiles, suggesting multiple, randomly
selected tiles to avoid periodicity, but without a practical solution.
Anisotropic noise [Goldberg et al. 2008] adds directional filtering
but still faces periodicity issues. [Heitz and Neyret 2018] addresses
this by blending three tiles randomly drawn from one noise image,
with blending operations preserving histograms. Randomized tiling
and blending (RTB) eliminates periodicity, supports non-Gaussian
random fields (e.g., texture patterns) since it preserves some struc-
tural components like edges [Fournier and Sauvage 2024]. [Lutz
et al. 2023] improves noise auto-covariance preservation through
importance sampling. Cyclostationary noise [Lutz et al. 2021] in-
troduces periodic statistics. RTB achieves high performance with
few texture accesses to produce complex noises, but struggles with
higher dimensions like 3D+t or 4D, which remain unachieved.
Noise–like functions share many procedural properties with

previously discussed Gaussian noise. Worley [Worley 1996] intro-
duces the first alternative to noise, called cellular texture basis func-
tion (TBF) but often referred to as “cellular noise” or “Voronoise”.
[Bridson et al. 2007] introduces curl noise, designed for turbulent
fluid simulation, and [Gaillard et al. 2019] proposes a procedural
function generating dendritic patterns for terrain modeling. Pha-
sor noise [Grenier et al. 2022; Tricard et al. 2019] extends Gabor
noise to generate a random phase field instead of an intensity field.
A periodic function - such as a step function - is then applied to
convert phases into intensities, leading to stripe patterns with per-
fect uniform local contrast. [Guehl et al. 2020] proposes a general
formulation for point process texture basis functions (PPTBF), us-
ing collections of arbitrary point processes. Once thresholded, this
model was shown to cover a large variety of natural random bi-
nary structures. Although deep learning and differential variants
[Baldi et al. 2023] made it possible to find parameters on a simplified
model, control remains one of the main issues, together with high
computational cost.

Non-procedural approaches originate from texture synthesis,
a broad research area beyond our focus. State-of-the-art techniques
optimize images tomatch statistics or local similarity across scales or
sample a latent texture space learned via deep neural networks [Akl
et al. 2018]. Some algorithms extend texture synthesis to 3D, either

from 3D data or 2D slices [Pietroni et al. 2010]. More recently, 3D
texture synthesis from 2D inputs has been achieved using Neural
Radiance Fields (NeRF) [Baatz et al. 2022; Huang et al. 2023, 2024].
Because of limited resolution, these methods generate 2.5D patches
to be mapped onto 2D surfaces embedded in 3D, rather than large-
scale volumetric textures. [Maesumi et al. 2024] trains a probabilistic
diffusion denoising model to reproduce multiple 2D noises and
interpolate them in a coherent manner. In summary, data-driven
texture synthesis methods can mimic noise but are limited to finite-
resolution images. Unlike procedural models [Ebert et al. 2003], they
cannot evaluate noise at arbitrary positions in infinite space with
minimal memory and constant cost.

3 Expected procedural noise properties
Noise generally refers to a functionN(x) returning a random value
at any position x ∈ R𝑛 . When 𝑛 = 3, N is often called “solid” noise.
We use the term procedural as defined in [Ebert et al. 2003]. Ac-
cordingly, N(x) should be a randomly accessible and inherently
parallel function of 2D, 3D, or higher-dimensional space. In addi-
tion, we are seeking for the following desirable mathematical and
algorithmic properties: N should be (a) a function defined from R𝑛
to complex numbers C that (b) can be computed at constant com-
plexity, (c) from a small amount of data and (d) without periodicity
or repetitions, at any location x and of (e) an infinite 𝑛-D space, (f)
independently from computation at any other location x′ ≠ x. Note
that, inspiring from [Tricard et al. 2019], we generate procedural
noises that return complex values: indeed, either the real part, the
modulus or the phase of N can then be used as a real value (e.g. a
density of material or a color intensity) to display.

In this paper, we are primarily interested in noises that implement
some Gaussian random process. In this case, the noise can be fully
characterized by its power spectral density (PSD), which provides
intuitive user-control [Lagae et al. 2010]. Thus, spectral control
(g) can be yet another desired, though not mandatory property.
Properties (b), (c), (d) and (f) lead to looking for a noiseN(x) that can
be readily implemented in a programmable GPU shader (fragment or
compute) such as, for example, Shadertoy [Jeremias andQuilez 2014].
With a few rare exceptions, such as random tiling and blending
(RTB), this excludes data-driven texture synthesis techniques, such
as those based on neural networks or optimization, as highlighted
in Section 2.
In the following, we first introduce our new procedural noise

model for Gaussian solid noise. We then explore its extensions to
other dimensions, time-varying noise, and non-Gaussian noise.

4 Gaussian Solid Wave-noise
Sparse convolution generates Gaussian noises (e.g. noises that ap-
proximate a Gaussian random process) by sampling spatial and fre-
quency domains using kernel functions centered on random points,
often requiring many samples to cover a wide frequency range, es-
pecially with Gabor kernels, which capture only a single frequency.
In contrast, our approach defines noise as the sum of randomly ori-
ented hyperplanar waves, similar to electromagnetic waves. These
waves inherently contain a full spectrum of frequencies, and by
precomputing them into 1D lookup tables, we achieve fast random

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Guehl, P. et al

access while maintaining all desired procedural properties. This
method can be somewhat seen as a kind of multidimensional ocean
surface, where waves from various directions and frequencies com-
bine to create a dynamic, turbulent pattern.

4.1 Procedural noise from Hyperplanar wave functions
White light is composed of a continuous spectrum of uncorrelated
electromagnetic waves across all frequencies. This physical concept
inspired the term white noise in signal processing, which refers
to a type of noise with uniform power across the frequency spec-
trum. Drawing from this analogy, we define our procedural noise
N : R𝑛 × R→ C as a continuous superposition of electromagnetic-
like waves over all spatial frequencies, resulting in a stochastic
function that varies across both space and time (𝑛-D + 𝑡). An individ-
ual electromagnetic wave can be described as: 𝐴(𝜉)𝑒𝑖 (2𝜋 𝜉 ·x−𝑐𝑡+𝜙) ,
where this formulation naturally generalizes to 𝑛-D space. Here,
x ∈ R𝑛 denotes the position, 𝑡 ∈ R is time, 𝜉 ∈ R𝑛 is the spatial
frequency vector, 𝑐 the wave speed (celerity), A the amplitude, and
𝜙 a phase offset. Randomness arises from assigning random phases
𝜙 , while spectral control is provided by amplitudes 𝐴:

N(x, 𝑡) =
1
𝐹

∫
R𝑛

𝐴(𝜉)𝑒𝑖 (2𝜋 𝜉 ·x+𝜙 (𝜉)−𝑐𝑡)𝑑𝜉

=
1
𝐹

∫
Ω

∫ ∞

0
𝐴(𝑓 𝜔)𝑒𝑖 (2𝜋 𝑓 x·𝜔−𝑐𝑡+𝜙 (𝑓 𝜔)) |J (𝑓 𝜔) | 𝑑 𝑓 𝑑𝜔,

(1)

𝐹 is a normalization factor used to control the noise values’ range.
Note how the first equation mathematically matches a multidimen-
sional inverse Fourier Transform of a spectral domain defined by
𝐴(𝜉)𝑒𝑖 (𝜙 (𝜉)−𝑐𝑡) . The second equation derives our actual wave noise
formulation from the first one by change of variable. It expresses
𝜉 = 𝑓 𝜔 as a scalar frequency 𝑓 ∈ [0, +∞[scaling a unit direction
vector 𝜔 ∈ Ω, where Ω is the unit 𝑛-sphere of R𝑛 (a circle in 2D, a
sphere in 3D). |J | is the determinant of the Jacobian matrix intro-
duced by change of variable 𝜉 to 𝑓 𝜔 , which is separable in 2D, 3D
and 4D: |J (𝑓 𝜔) | = J𝑓 (𝑓) J𝜔 (𝜔).
To compute N efficiently, our main insight is to regard the in-

ner integral as a complex-valued hyperplanar wave, which can be
pre-integrated and tabulated, while using importance sampling to
evaluate the outer integral, similarly to the sparse convolution ap-
proach for point processes. By denoting

S𝜔 (𝑥, 𝑡) =
∫ +∞

0
𝐴(𝑓 𝜔) 𝑒𝑖 (2𝜋 𝑓 𝑥 − 𝑐𝑡 +𝜙 (𝑓 𝜔))J𝑓 (𝑓) 𝑑 𝑓 , (2)

we get

N(x, 𝑡) = 1
𝐹

∫
Ω+

S𝜔 (x · 𝜔, 𝑡) J𝜔 (𝜔) 𝑑𝜔, (3)

where the complex-valued hyperplanar waveS𝜔 (x·𝜔, 𝑡) propagates
in the direction 𝜔 . We call the modulus |S𝜔 (𝑥, 𝑡) | the intensity of
the wave, which is constant on hyperplanes orthogonal to 𝜔 . We
also restrict the integration domain to Ω+ as directions 𝜔 and −𝜔
perfectly align. Figure 2 shows an example of wave.
Our goal is to provide a computational implementation of N

in 2D/3D and even higher dimensions. For clarity, we derive all
the equations and approximations in 3D for 𝑡 = 0, i.e. for a static

Fig. 2. Given a direction 𝜔 , a Gaussian amplitude distribution𝐴(·, 𝜔) (top)
and random phases 𝜙 (·, 𝜔) generate a wave intensity |S𝜔 (𝑥, 𝑡) | (middle)
corresponding to a 1D noise. Bottom: modulus of the associated planar wave
S𝜔 (x · 𝜔, 𝑡) , respectively displayed as heightfield and as greyscale image.

solid noise. The simpler, 2D case (surface noise) will be discussed
in Section 5, where we also discuss how to scale up to 4D, and
reintegrate time.

Spherical coordinates𝜔 (𝜑, 𝜃) = (𝑐𝑜𝑠 (𝜑)𝑠𝑖𝑛(𝜃), 𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃), 𝑐𝑜𝑠 (𝜃))
lead to J𝜔 = 𝑠𝑖𝑛(𝜃) and J𝑓 = 𝑓 2. The integral (2) spans an infi-
nite range in frequency space, so we need to limit the frequency
band. Therefore, without loss of generality, we set the maximum
frequency to 𝑓𝑚𝑎𝑥 = 1 meaning that 𝐴 = 0 for 𝑓 > 1. We can then
rewrite

S𝜔 (𝑥, 𝑡) =
∫ 1

0
𝐴(𝑓 𝜔) 𝑒𝑖 (2𝜋 𝑓 𝑥 − 𝑐𝑡 +𝜙 (𝑓 𝜔)) 𝑓 2 𝑑 𝑓 (4)

and

N(x, 𝑡) = 1
𝐹

∫ 2𝜋

0

∫ 𝜋

0
S𝜔 (x · 𝜔, 𝑡) sin(𝜃) 𝑑𝜃 𝑑𝜑. (5)

The Monte Carlo technique is a classical way to numerically
estimate integrals by sampling the integration domain. Applying it
to both variables 𝑓 and 𝜔 would however require sampling a too
large space. We avoid this issue by precomputing the integral on 𝑓 ,
and only applying the Monte Carlo approximation on 𝜔 , as follows:

N(x, 𝑡) ≈ 1
𝐹𝑁𝜔

𝑁𝜔∑︁
𝑘=1

S̃𝜔𝑘
(x · 𝜔𝑘 , 𝑡) J𝜔 (𝜔𝑘)

𝑝𝑑 𝑓 (𝜔𝑘)
, (6)

where𝑁𝜔 is a user defined number of directions𝜔𝑘 ∈ Ω+, which are
randomly sampled according to a probability density function (pdf)
denoted as 𝑝𝑑 𝑓 (𝜔). Here, S̃𝜔𝑘

is a pre-computed approximation of
the planar wave.

Let us now see how to define S̃𝜔𝑘
and 𝑝𝑑 𝑓 (𝜔), first in the isotropic

case and then in the anisotropic case.

4.2 Isotropic case
An efficient implementation of Equation (6) requires an approxima-
tion S̃𝜔𝑘

of the planar wave, and a sampling strategy 𝑝𝑑 𝑓 (𝜔).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Multi-Dimensional Procedural Wave Noise • 5

Fig. 3. Procedural solid wave noise is generated by partitioning Ω+ into
𝑁𝜔 regions of equal weight and superimposing corresponding waves S̃𝜔𝑘

.
Here 𝑁𝜔 = 𝑁𝜑𝑁𝜃 = 12 × 5 = 60 regions. From left to right: Real part of an
accumulation of 4, 30 and 60 complex valued planar waves.

Pre-computation of the planar wave. The goal is to approximate
the integral in (4) where the amplitude 𝐴 is known, while the phase
𝜙 is random. We pre-compute a 1D table

𝑇 [𝑗] = 1
𝑁𝑓

𝑁𝑓 −1∑︁
𝑙=0

𝐴

(
𝑙

𝑁𝑓

𝜔𝑘

)
𝑒
𝑖

(
2𝜋 𝑙

𝑁𝑓

𝑗

𝑁𝑥
+𝜙𝑙,𝑘

) (
𝑙

𝑁𝑓

)2
(7)

of size𝑁𝑥 , where𝜙𝑙,𝑘 are random phases uniformly drawn in [0, 2𝜋].
It approximates the integral (4) at time 𝑡 = 0 and at discrete posi-
tions 𝑥 = 𝑗/𝑁𝑥 , by sampling the integrand at discrete harmonic
frequencies 𝑓 = 𝑙/𝑁𝑓 . In accordance with the Shannon-Nyquist
theorem, the spatial sampling should be at least twice the highest
frequency: we use 𝑁𝑥 = 𝑚𝑁𝑓 ,𝑚 ≥ 2. Due to the use of discrete
harmonic frequencies 𝑙/𝑁𝑓 and a table size that is a multiple of 𝑁𝑓 ,
the table’s content is periodic.

In theory,𝑇 should depend on 𝑘 . However, we don’t want to store
one table per orientation 𝜔𝑘 , which would be too expensive. First,
note that, in the isotropic case, 𝐴 actually does not depend on 𝜔𝑘 .
Second,𝜙𝑙,𝑘 samples𝜙 (𝑙

𝑁𝑓
𝜔𝑘) in Equation (4). Using the same wave

S̃𝜔𝑘
for all orientations might create correlation patterns. To avoid

this while removing the dependence of𝑇 on 𝑘 , we use the following
strategy: A single table 𝑇 is computed, but we add a random offset
𝜁𝑘 ∈ [0, 1]. Ultimately, our approximation is

S̃𝜔𝑘
(x · 𝜔𝑘 , 𝑡 = 0) = 𝑇 [𝑖𝑥] , 𝑖𝑥 = 𝑁𝑥 × 𝑓 𝑟𝑎𝑐 (x · 𝜔𝑘 + 𝜁𝑘) (8)

where 𝑓 𝑟𝑎𝑐 () is the fractional part, used to deal with table index
overflow, without introducing visual artifacts thanks to the periodic-
ity of 𝑇 . 𝑖𝑥 is not an integer index. We linearly interpolate between
consecutive values in 𝑇 . This is natively available on GPUs when
the table is stored as a 1D texture.

Monte-Carlo sampling. A sampling strategy 𝑝𝑑 𝑓 (𝜔) must be cho-
sen for approximating Equation (6). We choose

𝑝𝑑 𝑓 (𝜔) = J𝜔 (𝜔)/
��Ω+�� ,

with
��Ω+�� = 2𝜋 the surface of the half-unit sphere. This choice

simplifies Equation (6) by making J𝜔 disappear.
In practice, we apply stratified sampling: we partition Ω+ into

𝑁𝜔 = 𝑁𝜑𝑁𝜃 regions of equal weight (with respect to the pdf), and
draw one direction 𝜔𝑘 = (𝜑𝑖 , 𝜃 𝑗), where (𝑖, 𝑗) ∈ [0, 𝑁𝜑 [×[0, 𝑁𝜃 [,
in each region 𝑘 according to the pdf. In practice 𝜑𝑖 = 2𝜋 (𝑖 +

(b)(a) (c)

Fig. 4. Slicing allows the use of a coarser sampling (𝑁𝜔 = 40). (a) The
approximation S̃ of S defines a periodic wave (top), which may cause
salient alignment artifacts in the generated solid wave noise when the
table 𝑇 contains high frequencies (bottom). (b) We disrupt periodicity by
introducing random offsets within slices (here of average size 1 : 4), but
some artifacts remain (bottom). (c) We further use randomly varying wave
directions inside slices to help removing the artifacts.

𝜄𝑖)/𝑁𝜑 , 𝜃 𝑗 = cos−1 ((𝑗 + 𝜒 𝑗)/𝑁𝜃), where 𝜄𝑖 , 𝜒 𝑗 are random vari-
ables uniformly drawn in [0, 1]. The arccos is important to draw 𝜃 𝑗
according to the pdf, which is depending on 𝑠𝑖𝑛(𝜃).

A noise generation example using Monte Carlo sampling is illus-
trated in Figure 3. Since we used the amplitude distribution of Figure
2 to precompute 𝑇 , it results in a solid noise (see right) featuring
a Gaussian power spectrum similar to Lewis’ sparse convolution
noise [Lewis 1989].

Slicing. We noticed that when only a few directions 𝑁𝜔 are used
along with a high frequency content with respect to the viewing
scale, salient alignment artifacts may appear. See Figure 4.a. To
avoid this issue, we subdivide R3 into irregularly spaced slices. The
advantage of slicing is twofold: 1) we avoid the alignments caused
by the periodicity of S̃𝜔𝑘

by drawing 𝜁𝑘 not only according to
the direction but also according to the slice, and 2) it allows us
to introduce random variations of the direction within each slice,
which effectively avoids the correlation patterns and persistent
alignments that would be caused by a constant wave intensity across
planes perpendicular to its direction. See Figure 4, (b) and (c). Slicing,
however, requires to manage smooth transitions from one slice to
the next. We do this by blending the wave real and imaginary values
at the boundary between two consecutive slices. In practice, slices
are generated in R3 by first defining a straight line from the origin
in a specified direction (orthogonal to𝜔). Points are regularly placed
along the line, and further jittered (to add randomness). Orthogonal
planes are then threaded through these points to create the slices.
A key parameter is the average distance between the points, which
determines the thickness of the slices. For example, in Figure 4 the
ratio 1 : 4 means 4 slices for the cube’s edge. This parameter is
analyzed in the supplemental material.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Guehl, P. et al

Instead of slicing, other subdivision and blending schemes, such
as simplicial complexes, could be used, as was done for simplex
noise [Perlin 2001]. However, in 3D, this would require 4 table ac-
cesses and blends (due to the tetrahedral simplex), a number further
increasing linearly with dimension. Slicing, in contrast, keeps this
number equal to 2 regardless of dimension, which makes it a much
better choice in terms of computational complexity.
Algorithm 1 provides some pseudo-code. The functions 𝑠𝑒𝑒𝑑 ()

and 𝑟𝑛𝑑 () ∈ [0, 1[correspond respectively to the initialization and
generation of random numbers. 𝑜𝑟𝑡ℎ𝑜 computes an orthogonal direc-
tion, and 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 returns a weight used for interpolation according
to the regularly placed and jittered points 𝑠𝑙𝑝𝑜𝑠 that define the slices.
We treat the complex-valued lookup table 𝑇 like a 1D texture, e.g.
like a function from [0, 1] to R2, following the typical GPU texture
implementation approach.

ALGORITHM 1: Isotropic wave noise

Input: (𝑥, 𝑦, 𝑧) , table T, dir. (𝑁𝜑 , 𝑁𝜃), slice thickness W, norm. fact.F
sum ≔ (0.0, 0.0) , 𝑥 ≔ 𝑥 ·𝑊, 𝑦 ≔ 𝑦 ·𝑊,𝑧 ≔ 𝑧 ·𝑊
foreach (𝑖, 𝑗) ∈ ([0, 𝑁𝜑 − 1], [0, 𝑁𝜃 − 1]) do

seed(𝑖, 𝑗, 0) , (𝛼, 𝛽) ≔ 𝑜𝑟𝑡ℎ𝑜

(
2𝜋 (𝑖+rnd())

𝑁𝜑+1 , arccos(𝑗+rnd()
𝑁𝜃 +1)

)
𝑝 ≔ 𝑥 sin 𝛽 cos𝛼 + 𝑦 sin 𝛽 sin𝛼 + 𝑧 cos 𝛽 // projection

seed(𝑖, 𝑗, ⌊𝑝 ⌋) , slpos ≔ 0.3 + 0.4 · rnd() // slice position

𝑢 ≔ 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑠𝑙𝑝𝑜𝑠, 𝑓 𝑟𝑎𝑐 (𝑝)) // 𝑢 ∈ [0, 1]
foreach s ∈ {0, 1} do

seed(𝑖, 𝑗, ⌊𝑝 ⌋ +s) ,(𝛼, 𝛽) ≔ (2𝜋 (𝑖+rnd())
𝑁𝜑+1 , arccos

(
𝑗+rnd()
𝑁𝜃 +1

)
)

𝑝′ ≔ (𝑥 sin 𝛽 cos𝛼 + 𝑦 sin 𝛽 sin𝛼 + 𝑧 cos 𝛽 + rnd())/W
sum += [(1 − s) · (1 − 𝑢) + s · 𝑢] · 𝑇 (𝑓 𝑟𝑎𝑐 (𝑝′))

end
end
return sum/F

4.3 Anisotropic case
Anisotropy is achieved by making the wave amplitudes vary with
respect to their direction.

General case: To handle anisotropy, a specific table 𝑇 needs to
be defined in each direction 𝜔 . Our model would then allow to
handle arbitrary power spectra. As an infinite number of tables
spanning the full space Ω cannot be defined, a practical solution
consists in partitioning Ω+ into a finite set of solid angles, each
with frequency content stored in a table 𝑇𝜔 , and then applying
directional interpolation. In this context, adapting the partitioning
to the desired Power Spectral Density (PSD), i.e., using smaller
angles in high-energy regions, is more effective than a straight
regular partitioning of Ω. A challenge is that direct interpolation
of complex-valued waves is not straightforward. We are looking
for linear interpolation of amplitudes, but this cannot be obtained
through interpolation of waves, because the sum of two complex
numbers does not equal the sum of their amplitudes. When waves
are out of phase, they may cancel out partially or completely, which
is known in wave theory as interference. This fundamentally limits
the ability to interpolate wave amplitudes by simply interpolating

Fig. 5. Anisotropic 3D wave noises. Left: Different amplitude distributions
(bar-charts on top) are used along the three coordinate axes and stored in
separate tables 𝑇 . Spatial waves (blue curves show real part) are precom-
puted using identical, random phases, to allow interpolation. Right: Null
amplitudes are used in the frequency domain except within the solid angles
in red (top), where the same amplitude distribution, stored in single table𝑇 ,
is defined. Since the solid angles (here, pyramids) are narrower along the
z-axis, the resulting, anisotropic noise patterns differ in XY and XZ planes.
The resulting solid noises are shown on bottom.

their complex representations. We distinguish different scenarios to
circumvent this issue.

Uni-phase waves with different frequency contents: The use of
an identical phase for each frequency allows for interference-free
intensity interpolation, as two complex numbers can have their
amplitudes directly summed when their phases align. This means
that all tables𝑇𝜔 must be precomputed with the same set of random
phases. During noise generation the random offset 𝜁𝑘 drawn inside
a given slice must also be identical when interpolating according to
the direction. The goal is to guarantee that phases keep being aligned.
A basic example using only three tables associated to each of the
coordinate axes is shown in Figure 5 (left). During noise generation,
interpolation is performed by computing the dot product: S̃𝜔𝑘

(𝑥) =
𝜔𝑘 · (𝑇𝑥 [𝑖𝑥],𝑇𝑦 [𝑖𝑥],𝑇𝑧 [𝑖𝑥]), with 𝑖𝑥 , same as previously defined in
Equation 8.
More complex power spectra can be defined using more input

tables, storing amplitudes in specific directions.

Waves of same frequency content in specific directions: This is a
simpler anisotropy case. It uses a null amplitude everywhere except
in a few directions defined by solid angles, for which the same
amplitude, stored in a single table 𝑇 , is used. See Figure 5 (right) as
an example of two distinct, non-zero amplitude angles in 3D.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Multi-Dimensional Procedural Wave Noise • 7

XY XZ

Fig. 6. Anisotropic 3D wave noise generated from a single 2D example
(top). Middle: using the 2D PSD of the example (top right) respectively
on XY (left) and XZ (right) planes. 3D extension is obtained by extending
2D angular sectors to 3D pyramids, as previously shown in Figure 5 (top).
Bottom: combining the two previous sets of angles.

4.4 Designing solid wave noise from 2D noise images
In practice, designing noise directly in the frequency domain can
be a difficult task, which is why noise “by example” was introduced
in [Galerne et al. 2012]. This approach simplifies the process by
allowing the user to provide a sample noise image. Similarly, we
extend this idea to generate solid wave noises using a single 2D
noise image as input (see Figure 6). We first decompose the 2D in-
put spectral domain computed from the input noise image by Fast
Fourier Transform (FFT) into angular sectors, each with its own pre-
computed table (and identical phases to allow interpolations). Then,
we extend the sectors to pyramids in 3D. We have three choices
to do so, as the input can be considered as either corresponding
to the XY, XZ or YZ planes of a volume. Two of these results are
shown in Figure 6 (middle), where the 3D noise naturally matches
the example in the corresponding planes. Further merging such
sets of solid angles improves spectral coverage (bottom), enabling
enhanced, yet not full 3D spectral control.

We leave this aside for further work. Our simpler fusion method,
offering intuitive control over the generated solid noise through
one or several 2D noise images, proved sufficient to generate all the
examples in this paper.

5 Wave noise in other dimensions
In this section, we explain how the procedural wave noise model
we just defined for solid noise can be extended to 2D, 4D, as well

Fig. 7. 2D noise generation using the real part of an accumulation of 5, 10,
15 and 20 complex valued S̃𝜔𝑘

. Upper right is the corresponding power
spectrum. Ω+ was decomposed into 20 equally sized angular sectors.

time

Fig. 8. Time varying solid wave noise (𝑡 = 0 to 0.4), using a speed 𝑣 = 0.01.
The power spectral density (PSD) is perfectly preserved over time.

as to animated noise. We show that specific simplifications can be
made in the 2D case and that consistent models for the generation
of animated 𝑛-D+t noises can be set up by extending a 𝑛-D noise
rather than using more general, yet costly, (𝑛+1)D wave noise.

5.1 2D noise
The wave noise function in Equation (1) can be reused in 2D by sub-
stituting the 3D direction vectorwith a 2D vector𝜔 = (𝑐𝑜𝑠 (𝛼), 𝑠𝑖𝑛(𝛼)).
In this case, J𝜔 = 1 and J𝑓 = 𝑓 . Since J𝜔 is now constant, the
sampling strategy 𝑝𝑑 𝑓 (𝜔) defined in Equation (6), consists in parti-
tioning Ω+ into 𝑁𝜔 equally sized angular sectors while drawing one
random direction uniformly in each. In 2D, Ω+ represents a half-unit
disk, with

��Ω+�� = 𝜋/2 its surface. The previous slicing method can
be reused, with 1D lines instead of planar slices. A surface noise
example using 20 angular sectors is depicted in Figure 7.

5.2 4D and higher dimensional noises
Higher-dimensional noises can be useful in applications involving
phenomena with multiple stochastic parameters, e.g. if non-uniform
values for temperature or pressure needed to be initialized over a
3D density field. Let us detail our solution in the 4D case:

𝜔 = (𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠 (𝜑)𝑠𝑖𝑛(𝜃), 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃), 𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠 (𝜃), 𝑐𝑜𝑠 (𝜓))
leading to J𝜔 = 𝑠𝑖𝑛2 (𝜓)𝑠𝑖𝑛(𝜃) and J𝑓 = 𝑓 3. In this case, Ω+ rep-
resents a half-unit 4D-sphere, also called 3-sphere in mathematics.
We still can set 𝑝𝑑 𝑓 (𝜔) = J𝜔 (𝜔)/

��Ω+��, with ��Ω+�� = 𝜋2. Technically,
there is no issue in scaling up from 3D to 4D, except that 𝑁𝜔 must be
increased to ensure adequate directional coverage. However, in 4D,
importance sampling involves drawing𝜓 based on 𝑠𝑖𝑛2 (𝜓), whose
integral lacks a closed-form inverse. A numerical approximation is
required. Cost is further increased because of wave interpolations,
doubling table accesses from 4 in 3D to 8 in 4D.

5.3 Time-varying wave noise
3D+t noise could be generated as 4D noise, but at high computa-
tional costs. To reduce complexity and provide easier control, a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Guehl, P. et al

Re() Im() | | arg()

Fig. 9. Solid wave noise is complex valued. From left to right: real and
imaginary parts of an anisotropic wave noise, modulus and phase, these
two respectively showing typical ridged noise and Phasor patterns.

key-framing approach could also be envisioned, i.e. temporal in-
terpolation between a set of predefined solid noises. This would,
however, cause undesirable "ghosting" effects, leading to poor visual
results. Instead, we draw inspiration from electromagnetic or ocean
waves, allowing waves to propagate through space at their own
speed.

Time was introduced in our noise model in Equations (2) and (6)
using a pulsation 𝑐 , which is a classic parameter in electro-magnetic
wave theory, but all the approximations discussed in Section 4 were
developed for 𝑡 = 0. It is easy to see that our approximation of
S̃, based on a precomputed table 𝑇 according to Equation (7), no
longer holds when 𝑡 > 0. In fact, each time step results in a new S̃
and would require its own table to be precomputed. To avoid the
need for generating such time-varying set of tables we input a wave
speed parameter 𝑣 and we substitute S̃𝜔𝑘

(x ·𝜔𝑘 , 𝑡) for S̃𝜔𝑘
(x ·𝜔𝑘 −

𝑣𝑡, 0). The effect of time is now to introduce in each direction, a
synchronized shift of the entire S̃ along the direction 𝜔𝑘 , rather
than applying oscillations to all its individual frequency components
as given by Equation (4). This enables the precomputation of the
table𝑇 , in the same manner as defined in Equation (7), while motion
is achieved at no additional computational cost by simply shifting
the table access indices: Equation (8) becomes

S̃𝜔𝑘
(x · 𝜔𝑘 , 𝑡) = 𝑇 [𝑁𝑥 × 𝑓 𝑟𝑎𝑐 (x · 𝜔𝑘 − 𝑣𝑡) + 𝜁𝑘] . (9)

Since each of the 𝑁𝜔 waves propagates in a different direction, we
experienced that such directionally-synchronized motion produces
a rich-enough movement, without visual artifact, provided that we
use directions in the entire Ω, and not only Ω+. Moreover, user
control is intuitive thanks to explicit speed control in each direction.
As results show (see the companion video), this approach main-

tains visual and spectral consistency of the noise over time, without
any additional computational or memory cost. Figure 8 illustrates
time-dependent solid noise, showing its evolution for 5 consecutive
time steps. Note that generating 4D+t noise is also straightforward
with our approach, using the same technique but for extending 4D
noise.

6 Extension to Non-Gaussian wave noises
Our noise is defined by summing complex-valued waves, oriented
in random directions. So far, we used the real part of the waves,
with random phases to mimic Gaussian processes and control via
amplitude distributions, similarly to the Gabor kernels used to con-
trol the PSD of sparse convolution noise. But our model is more
general, and can also capture a variety of non-Gaussian noises.

Fig. 10. Non-gaussian 3D wave noise. Top shows wave intensities, bottom
resulting noises. Local intensity peaks can generate either crystal-like struc-
tures (left) or scratches and webs (right).

6.1 Phasor and Ridged noises
Instead of the real part, we may use the modulus or the phase of
a wave noise to generate some density or color value. Since the
phase belongs to a random phase field, using it is equivalent to
using Phasor noise [Tricard et al. 2019].
Figure 9 shows an anisotropic wave noise example, serving as

basis for ourwave-based Phasor noise.While the latter is obtained by
using the Phase (bottom right), the modulus of wave noise (bottom
left) resembles ridged noise, a non-Gaussian noise often used for
modeling fractal terrains.

6.2 Crystal-like and Wired noises
To generate other real-valued noises with non-Gaussian statistics,
one can also define custom waveforms S̃𝑘 , that are not constrained
to Eq. (4). Two examples of arbitrary custom waves are shown in
Figure 10. On the left, S̃𝑘 is characterized by several steps, providing
a crystal-like noise appearance. On the right, S̃𝑘 features localized
Dirac impulses, creating a web-like or wired noise pattern. Both
examples were produced without modifying Algorithm 1; only the
values of 𝑇 were precomputed using a custom approach.

It is important to note that such patterns cannot be produced
with Phasor noise, even if the notion of wave seems similar at first
glance to the one defined in [Tricard et al. 2019]. In our case, we
sum multiple waves, whereas Phasor composes a periodic function
with its random phase field, thus generating uniformly contrasted,
mainly stripe like, patterns.

6.3 Cellular noise
Yet another way of creating non-Gaussian noises from our wave-
based model is to substitute the sum of waves with another operator.
Worley pioneered the use of n-th closest distances to random points,
instead of summing kernel functions centered on them. Similarly,
we can substitute the sum by a “min” operator. In practice, this
modifies Algorithm 1 by initializing 𝑠𝑢𝑚 to +∞ instead of 0 and
replacing additions by: 𝑠𝑢𝑚 ≔ min(𝑠𝑢𝑚,𝑇 (frac(𝑑))). Substituting
table 𝑇 by a reversed triangle function, 𝑇 (𝑥) = |𝑥 − slpos|, centered
on slices yields cellular patterns with aligned borders, differing from
Worley noise. See Fig. 11(a). The resulting pattern closely mimics a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Multi-Dimensional Procedural Wave Noise • 9

(a) (b) (c) (d)

Fig. 11. Cellular wave noise. (a) using a min operator generates cellular
noise, as inspired by Worley’s cellular function, our cells having a different
structure. (b) visualizing a binary hash code obtained by stacking boolean
values resulting from a step function wave. (c) using a 1 − 𝛿 wave intensity.
(d) further using an iterative cell subdivision, imitating STIT patterns.

random hyperplane process (RHP), which is a popular mathematical
basis for generating random polytopes [Hug and Schneider 2024].
Figure 11(b) is same as (a), but using a Dirac delta function: 𝑇 (𝑥) =
1 − 𝛿 (𝑥 − 𝑠𝑙𝑝𝑜𝑠). In both cases, blending is disabled across slice
borders, causing visible discontinuities. To conceal them, a slice-
aligned wave is added, effectively drawing both, slices and waves.
Algorithm 2 reflects this: (1) we loop over both, slices (𝑘 = 0) and
waves (𝑘 = 1) and (2) blending is replaced by two min operations,
e.g. one on either side of the corresponding hyperplane.

ALGORITHM 2: Isotropic cellular wave noise

sum ≔ +∞
foreach (𝑖, 𝑗) ∈ ([0, 𝑁𝜑 − 1], [0, 𝑁𝜃 − 1]) do

for 𝑘 ≔ 0 to 1 do
seed(𝑖, 𝑗, 𝑘 · (𝑖𝑑 + 1 − 𝜒))
(𝛼, 𝛽) ≔ (2𝜋 (𝑖+rnd())

𝑁𝜑+1 , arccos(𝑗+rnd()
𝑁𝜃 +1))

𝑝 ≔ 𝑥 sin 𝛽 cos𝛼 + 𝑦 sin 𝛽 sin𝛼 + 𝑧 cos 𝛽 // projection

𝑖𝑑 ≔ ⌊𝑝 ⌋, 𝑜 := 𝑓 𝑟𝑎𝑐 (𝑝)
seed(𝑖, 𝑗, 𝑖𝑑) , slpos ≔ 0.3 + 0.4 · rnd()
sum ≔𝑚𝑖𝑛 (sum, |slpos − 𝑜 |) // no T needed

𝜒 ≔ step(𝑠𝑙𝑝𝑜𝑠 − 𝑜) // 1 if o < slpos, else 0

seed(𝑖, 𝑗, 𝑖𝑑 − 𝜒 + (1 − 𝜒)) ,slp ≔ 0.3 + 0.4 · rnd()
sum ≔ min (sum, 𝜒 (1 + 𝑜 − slp) + (1 − 𝜒) (1 − 𝑜 + slp))

end
end
return sum/F

Figure 11(c) still shows the same cellular noise, visualized dif-
ferently. Now, instead of a Dirac, we use a step function 𝑇 (𝑥) =

𝑠𝑡𝑒𝑝 (𝑥 − 𝑠𝑙𝑝𝑜𝑠) (0 if 𝑥 < 𝑠𝑙𝑝𝑜𝑠 else 1), partitioning space into half-
spaces. Each point thus receives a binary value, and stacking these
for all slices and waves forms a binary code identifying a unique
polytope. In (c), this code is mapped to grayscale via hashing to
reveal the random polytope structure.
By introducing an iterative process that adds more polytopes

inside a given polytope according to some probability, we can fur-
thermore imitate STIT tessellations (where STIT means STable with
respect to ITerations), another well-studied mathematical model
for random tessellations, often applied to the modeling of crack
patterns [Nagel et al. 2008]. Figure 11(d) illustrates a result obtained
with a probability of 70% and stopped after five iterations. Note

how only some “initial” polytopes (shown in (b)) are further sub-
divided. We would like to stress that our cellular noise is only a
procedural approximation of true RHP and STIT. Because of slic-
ing, our approach enforces some parallelism that does not exist in
mathematical random processes.

Fig. 12. Modeling volumetric data or micro-materials using a classical RGBA
Transfer Function (TF). Left: 2D slice of the noise and TF. Right: correspond-
ing volumetric material.

7 Results and Evaluation
Many results were already shown in Sections 4, 5 and 6. We dis-
cuss below the applications of wave noise, and provide an in-depth
comparison with previous procedural noise models in terms of per-
formances, expressivity and quality. See also the companion video.

7.1 Applications
Generating volumetric data: Firstly, our model can directly be used

to generate volumetric data-sets, either structured or representing
unstructured, micro-material. This is achieved by applying transfer
functions for color and transparency to our model (see Figure 12).

A result based on by-example design (see Section 4.4) is shown in
Figure 13. Note the achieved visual similarity between the generated
volumetric wave noise data (shown both as a slice and in 3D) and
the input images.

Generation of PBR materials: A second major application is the
generation of Physically-Based Rendering (PBR) materials to be
used on surfaces. Being procedural, wave noise can be seamlessly
integrated within any existing procedural texture generation tool
(i.e. a node graph system used to design resolution-free materials),
where it would provide a versatile new node. Solid wave noise can
also directly be used as follows.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Guehl, P. et al

4.45e-03 1
1.54e-04 1.15e-01

Fig. 13. Solid wave noise by example. Left column: (left most) 2D input
exemplar with corresponding power spectral density (PSD), (middle) mea-
sured PSD error using L2 norm, (right) 2D slice of the generated wave noise
with corresponding average PSD. Note the very low spectral error (see loga-
rithmic scale on bottom). Right column: rendering of a corresponding 3D
material with transparency (left) and RGBA transfer function (right).

PBR materials on arbitrary surfaces can be generated using an
adaptation of the method of [Bruckner and Gröller 2007], introduced
in the field of direct volume rendering: We first generate various
material styles by transferring attributes such as colors, normals,
albedo, reflectance, and ambient occlusion from a material database.
The resulting material is stored as a "style transfer function" repre-
sented as a cube map (capturing position) projected onto a sphere
(capturing normals), unlike [Bruckner and Gröller 2007], which uses
only a lit sphere projection. The material can then be reapplied at
any 3D point of a surface, based on the wave noise value, without
the need for UV coordinates. See Figure 14.

In addition, noise can serve as a guide for optimization-based data-
driven texture synthesis methods, an approach known as “textures
by numbers”, and extended to PBR material generation in [Guehl
et al. 2020]. In Figure 15, wave noise is used to generate a guidance
map (top) for the synthesis of structured materials, making use of
the exemplars of texture layers at the left.

Fig. 14. Modeling surface materials using 3D wave noise and style transfer
functions (left), which we mapped on surfaces without UV coordinates.

Generation of animated materials: The last application is anima-
tion. Figure 16 illustrates this through four inspiring examples: the
transformation of a surface into an icy rock, the cooling of a glowing
stone, the gradual growth of moss on a rock, and the formation of
crack patterns on a clay statue. The first three rows showcase 3D+t
noise, enabling patterns to move and deform rather than simply fad-
ing in or out, as static 3D noise interpolation would. This dynamic
behavior adds a sense of realism (refer to the video for a detailed
view). In the last row, the probability of subdivision of 3D cellular
wave noise increases over time, gradually revealing more fractures.

Smooth transitions: Our noise relies on real-valued parameters
that support linear interpolation. Precomputed waves can also be
interpolated (assuming phase alignment) to smoothly change fre-
quency content. As shown in Fig. 17, this enables the noise to
smoothly evolve across the volume, from one cube corner to the
opposite (not just across faces).

7.2 Implementation and performances
Our wave noise generator was implemented in C++.

Performances were computed on a desktop computer, Windows
11, Intel, i7, 8 cores, 32 Go memory, NVidia GeForce RTX 3090, 24Go
VRAM GDDR6X, 10496 cores, and OpenGL shader language. We
analyzed the average framerates for a viewport of size 1024 × 1024.
Framerates in the companion video might differ because we used
an interface with editable parameters for the video, whereas mea-
surements have been done using fixed parameters for the figures.

Table 1 compares performance for generating 2D/3D textures of
various sizes using compute shaders. It includes Perlin and Worley
fractal noises, Gabor noise with varying kernel counts, and wave
noise with varying direction counts and dimensions.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Multi-Dimensional Procedural Wave Noise • 11

Fig. 15. By-example PBR material modeling using wave noise (top row) as “guidance”, and input exemplars of texture layers, here normal and albedo maps
(left column). The resulting surface materials are rendered using Blender Cycles, with environment-map lighting for photo-realistic visualization.

Fig. 16. Examples of 3D+t wave noise for material animation. Each row respectively shows a freezing rock, the cooling of a glowing stone, moss growth on a
rock and cracks forming on a clay statue.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Guehl, P. et al

3D Textures Perlin Noise Worley Noise Gabor Noise Wave Noise
(fractal) (fractal) 3D/3D+t/4D

10 Kernels 50 Kernels 90 Kernels 10 Dir 50 Dir 100 Dir
2563 5.6 15.15 40.86 175.86 315.2 2.6/2.74/7.45 11/11.7/25.8 22/23.3/44.6
5123 44 131 311.3 1 438 2 584 20.8/22/53.1 88.1/93.2/206.6 175/185.6/361.3
10243 346 1 047 2 552 116 000 206 000 167/176.4/429 706/749.6/1 719 1 410/1 502/2 970

2D Textures
10242 0.328 0.94 2.23 11.0 22.12 0.14 0.62 1.28
20482 0.92 2.75 6.37 32.9 61.9 0.39 1.82 3.72

Table 1. Performance (in ms) for the generation of textures of varying resolution using compute shaders. Each result is an averaged timing over 100 texture
generations. The last column indicates timing for the generation of a 3D texture with our method using a 3D, 3D+t or 4D noise. The last lines show timings for
rendering a screen-covering quad using a fragment shader of 2D noises.

Fig. 17. Smooth transitions: (left) varying frequency range; (middle) varying
frequency contents, i.e. the amplitude variations within the range; (right)
varying frequency contents and anisotropy.

7.3 Model parameters
Our noise model is based on a compact set of parameters made
accessible via a graphical user interfaces (GUI). See Figure 18. More
details are available in the supplemental material. For clarity, we
distinguish the following groups of parameters:
Spatial Transformation controls 3D noise position and scale

through translation (X, Y, Z) and global zoom factor.
Quality versus Framerates allows to balance both, by setting

slice size (parameter𝑊 in Algorithm 1), and the number of direc-
tions, which we reduced to a single value 𝑁𝐷𝑖𝑟 = 𝑁𝜑 ·𝑁𝜃 , by fixing
𝑁𝜃 = 4, as this proved to be an appropriate choice in most cases.
Frequency Range shapes the spectral domain via anisotropy

spread, and a global band pass filter defined by frequency bounds
(FreqMin, FreqMax ∈ [1/𝑁𝑓 , 1],with 𝑁𝑓 = 64). Outside this range
amplitudes are null. This affects only Gaussian noises.
Waveforms and Noise types allow users to choose from vari-

ous preset waveforms, wave combinations Operator, and degrees
of anisotropy. It includes options for: 1) Gaussian noises character-
ized by amplitude variations within the previous range [FreqMin,
FreqMax], commonly referred to by color names such as blue (in-
creasing) and brown (decreasing) or other variations, 2) non-Gaussian
noises, classified according to visual characteristics (e.g., the crystal-
and scratch-like patterns in Figure 10), and cellular noises as in
Figure 11. While we provide a limited selection of waveform presets,
a potential extension would be the integration of an interactive 1D
function editor allowing users to design custom waveforms more
freely.

Cellular Noise Settings allow to set the probability and maxi-
mum recursion depth of cellular noise, as in Figure 11(d).

Post-Processing and Display define what value is rendered (as
in Figure 9), scaled by contrast used to compute normalization
factor 𝐹 in Algorithm 1.
Temporal and Animation Controls add motion to the noise

using a timeline position and wave speed as in Figure 16.

FreqMin=1/64, FreqMax=1/2
Operator=Isotropic Sum

Wave type=noise-gaussian

FreqMin=3/64, FreqMax=1
Operator=Isotropic Sum

Wave type=noise-gaussian

FreqMin=1/64, FreqMax=1/2
Operator=Isotropic Sum
Wave type=noise-blue

FreqMin=1/64, FreqMax=1
Operator=Isotropic Sum
Wave type=noise-brown

FreqMin=1/64, FreqMax=1
Operator=Aniso Sum - one direction

Wave type=noise-blue

Operator=Isotropic Sum
Wave type=nongauss-web

Operator=Isotropic Sum
Wave type=nongauss-crystal1

Operator=Aniso Sum - two directions
Wave type=nongauss-crystal1

Operator=Random polytopes
STIT Probability=0.5
STIT Recursions=1

Operator=Cellular
STIT Probability=0.8
STIT Recursions=4

Wave type

Operator

Value

Fig. 18. Top: Graphical User Interface (GUI). Bottom: Some different param-
eter settings with corresponding noise result.

7.4 Comparison with previous models
Our goal was to develop a generic and efficient procedural noise,
usable in high-dimensions (3D, 4D, and 3D+t). We compare with
the noises with similar procedural properties, namely lattice noises
[Perlin 1985, 2001], sparse convolution noises [Lagae et al. 2009;
Lewis 1989], Phasor noise [Tricard et al. 2019] and Worley’s cellular
noise [Worley 1996].

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Multi-Dimensional Procedural Wave Noise • 13

598 fps, Fractal Gradient noise

(a)

645 fps, Gradient noise

(d)

712 fps, wave noise #28, 1:14

(b)

681 fps, wave noise #36, 1:14

(f)

912 fps, Reference 256 voxels

(c)

(e)

3

266 fps, Gabor noise #675, 1:1 / 1:8

Fig. 19. Comparison with Gaussian noises, with 2D cut of XY plane (left)
and 3D views (right): (a) Perlin noise: fractal sum of 8 octaves, each scaled
by 0.8 and weight halved at each level. (b) Wave noise with 1/𝑓 𝑛 decreasing
amplitudes (see bar chart) resulting in a fractal noise. (c) Reference noise
2563 computed using inverse FFT and rendered as 3D texture, (d) Perlin
noise struggling to replicate the reference, (e) Gabor noise better matching
the reference thanks to spectral control, but requiring 2 lattices (1 : 1 and
1 : 8 sizes), resp. 10 and 15 points, i.e. 675 kernels. (f) Wave noise achieving
a good match with 36 directions and 14 slices per direction, at lower costs.

Reference

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(d)
(e)

(f)

(g)

(h)

(i)

Fig. 20. Quantitative evaluation of wave noise: Top-right shows the reference
and its PSD. The chart plots average spectral error (L2 norm) vs. number
of directions for varying slice thicknesses. Slicing reduces error with few
directions (see a, b, c), but causes spectral leakage as directions increase:
the error no longer decreases. It may even increase (see f and i).

Comparison with Gaussian noises: Figure 19 presents side by side
comparisons between our wave noise and solid fractal Perlin noise, a
widely used noise for modeling natural phenomena, such as volumet-
ric clouds, and whose framerate scales with the number of octaves.
For the comparison, we used our isotropic wave noise, where am-
plitude decreases as a function of frequency 𝑓 in the form 1/𝑓 𝑛

to imitate the fractal behavior. Our method relies on precomputed
waves, so performance only depends on the number of random
directions, not on the number of scales. This leads to fairly similar
visual output for comparable framerates. But, additionally, our wave
noise supports animation without further impacting performance,
a significant advantage over such a similar-looking lattice noise.
We finally provide a ground truth noise texture in (c) generated
by inverse 3D FFT, representing isotropic band-pass filtered white
noise across two frequency bands, and show that Perlin noise fails
to replicate it. Indeed, summing scales in Perlin noise creates "Brow-
nian fractal" spectra, unsuitable for band-pass filtering. We compare
to spectral density of the reference shown in (c) using the same
logarithmic scale and color ramp as in Figure 6. Note that the error
in (d) is highest in the low frequency range (spot in center).
Next we compare with Gabor sparse convolution noise [Lagae

et al. 2009], able to better match the reference thanks to spectral
control (see error, mostly dark blue): its FT is a sum of Gaussians
enabling arbitrary power spectra to be generated. However, precise
control is difficult for spectra like in (c) without many kernels. Two
lattices (1 : 1 and 1 : 8 sizes) with resp. 10 and 15 points require a total
sum of 675 kernels. Usingmore kernels and finer grids could improve
accuracy but also increase costs. Gabor noise speeds up searches by
jittering points within lattices, but the number of neighbors (and
points) scales exponentially with dimension (9 in 2D, 27 in 3D, 81
in 4D). Covering frequency ranges with high precision requires
many points on a single lattice. [Galerne et al. 2012] addresses this
by splitting the spectrum into bands with tailored lattices. In the
end, a Monte Carlo approach over spatial and frequency domains is
used, which explains high costs. Our method reduces sampling via
pre-computations, reproducing the ground truth more efficiently
(see Figure 19.(f). Figure 20 further shows a quantitative evaluation,
outlining how the spectral error evolves according to the number
of directions and the slice thickness.

Comparison with non-Gaussian noises: Figure 21 provides a side-
by-side comparisonwith previous non-Gaussian noises. Comparison
with Phasor noise shows the efficiency of our model, twice as fast,
for similar visual results. We then provide comparisons with cellular
wave noise, evenwhile ourmodel generates, by design, a structurally
different pattern (see Section 6). Like sparse convolution, Worley
noise uses random points jittered inside an integer lattice, so its
performance is directly linked to their number. For cellular wave
noise, we implemented the triangular function profile directly as
program code, thus requiring no table 𝑇 and no memory at all. We
can observe that our wave noise provides a new class of cellular
structures, resembling hyperplanar random processes (HRP).

7.5 Limitations
While our wave noise model is efficient enough for high dimensions
and allows to capture a large range of existing noises, plus some new
cellular noises, its current formulation brings several limitations.

A first difficulty is related to high frequency content, which may
require increased slicing to mitigate alignment artifacts, thus reduc-
ing spectral accuracy. Another issue is real-time filtering, that is
evaluating the noise at different resolutions, to avoid artifacts at
distance rendering. For linearly combined waves, it is possible to

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Guehl, P. et al

316 fps, Phasor noise
#416, 1:2

(a) (b)

720 fps, wave noise
#12, 1:14

679 fps, Worley noise
#81, closest

731 fps, wave noise
#12, 1:14

Fig. 21. Comparison with non-Gaussian noises: (a) Phasor noise [Tricard
et al. 2019] (left) vs. wave noise (right) for similar frequency spectrum (b)
Worley’s cellular function [Worley 1996] using 3 points per lattice cell (left)
versus cellular wave noise (right).

pre-filter the tabulated waves (e.g. to MIPmap the tables 𝑇) and to
fetch them at the proper resolution. Conversely, when the combi-
nation is non linear (e.g. in cellular noise), or a transfer function is
applied, it remains for a future work. Moreover, while it achieves
procedural noise synthesis from a single 2D image, our design solu-
tion to create solid wave noise is limited to Gaussian processes. This
limitation arises from its reliance on random phases, which disrupt
structural components (added only via specific transfer functions)
and prevent the generation of structured 3D textures from examples.
Additionally, our by-example formulation considers frequencies
only on axis-aligned planes, leading to wavy artifacts in isotropic
cases. Lastly, while 2D-exemplar-based 3D texture synthesis could
help precomputing a full 3D PSD via FFT and improve frequency
coverage, this is left for future work.

8 Conclusion
We introduced a novel procedural model for complex valued, non-
periodic noises. We used hyperplanar waves randomly oriented in
𝑛-D space, stored in 1D tables for efficient computation and minimal
memory use. It enables custom power spectra by varying wave-
forms and supports novel non-Gaussian random fields and cellular
patterns beyond Gabor, Phasor, and Worley’s approaches. Our wave
noise seamlessly integrates into procedural material modeling tools,
facilitating infinite, resolution-independent volumetric and surface
materials to be designed and applied to surfaces without UV coordi-
nates. Wave noise allows spectral control and is more efficient in 2D,
3D and higher dimensions compared to Gabor sparse convolution,
since it relies on pre-computations.

Our insight of combining Monte Carlo and precomputation-based
approaches represents an initial step toward enhancing the perfor-
mance of multidimensional noises while maintaining low memory
usage andwith precise spectral control. As performance still remains
higher when accessing an entire volume stored as a 3D texture, fu-
ture work could explore incorporating additional precomputation
stored in 2D tables instead of 1D tables, e.g. still without relying on
full 3D tiles. Additionally, extending the example-based design to the
support of structural components would be an excellent extension.
Improving animations to combine them with physical simulations
would last be a really interesting area for future extension.

References
Adib Akl, Charles Yaacoub, Marc Donias, Jean-Pierre Da Costa, and Christian Germain.

2018. A survey of exemplar-based texture synthesis methods. Computer Vision and

Image Understanding 172 (2018), 12–24.
H. Baatz, J. Granskog, M. Papas, F. Rousselle, and J. Novák. 2022. NeRF-Tex: Neural

Reflectance Field Textures. Computer Graphics Forum 41, 6 (2022), 287–301. doi:10.
1111/cgf.14449

Guillaume Baldi, Rémi Allègre, and Jean-Michel Dischler. 2023. Differentiable point
process texture basis functions for inverse procedural modeling of cellular stochastic
structures. Computers & Graphics 112 (2023), 116–131.

Connelly Barnes and Fang-Lue Zhang. 2017. A survey of the state-of-the-art in patch-
based synthesis. Computational Visual Media 3, 1 (March 2017), 3–20.

Robert Bridson, JimHouriham, andMarcus Nordenstam. 2007. Curl-noise for procedural
fluid flow. ACM Transactions on Graphics (ToG) 26, 3 (2007), 46–es.

Stefan Bruckner and M Eduard Gröller. 2007. Style transfer functions for illustrative
volume rendering. In Computer Graphics Forum, Vol. 26. Wiley, 715–724.

Arthur Cavalier, Guillaume Gilet, and Djamchid Ghazanfarpour. 2019. Local spot noise
for procedural surface details synthesis. Computers & Graphics 85 (2019), 92–99.

Robert L Cook and Tony DeRose. 2005. Wavelet noise. ACM Transactions on Graphics
(TOG) 24, 3 (2005), 803–811.

Richard Cowan. 2010. New Classes of Random Tesselations Arising from Iterative
Division of Cells. Advances in Applied Probability 42, 1 (2010), 26–47. http://www.
jstor.org/stable/25683805

David S Ebert, F Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley.
2003. Texturing & modeling: a procedural approach. Morgan Kaufmann.

Randima Fernando et al. 2004. GPU gems: programming techniques, tips, and tricks
for real-time graphics. Vol. 590. Addison-Wesley Reading.

Romain Fournier and Basile Sauvage. 2024. Mix-Max: A Content-Aware Operator for
Real-Time Texture Transitions. Computer Graphics Forum 43, 6 (2024).

Mathieu Gaillard, Bedrich Benes, Eric Guérin, Eric Galin, Damien Rohmer, and Marie-
Paule Cani. 2019. Dendry: A procedural model for dendritic patterns. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 1–9.

Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. 2012. Gabor noise
by example. ACM Transactions on Graphics (ToG) 31, 4 (2012), 1–9.

Bruno Galerne, Arthur Leclaire, and Lionel Moisan. 2017. Texton noise. In Computer
Graphics Forum, Vol. 36. Wiley Online Library, 205–218.

Geoffrey Y Gardner. 1985. Visual simulation of clouds. In Proceedings of the 12th
annual conference on Computer graphics and interactive techniques. 297–304.

Guillaume Gilet, Jean-Michel Dischler, and Djamchid Ghazanfarpour. 2012. Multiple
kernels noise for improved procedural texturing. The Visual Computer 28 (2012),
679–689.

Guillaume Gilet, Basile Sauvage, Kenneth Vanhoey, Jean-Michel Dischler, and Djamchid
Ghazanfarpour. 2014. Local random-phase noise for procedural texturing. ACM
Transactions on Graphics (ToG) 33, 6 (2014), 1–11.

Alexander Goldberg, Matthias Zwicker, and Frédo Durand. 2008. Anisotropic noise.
ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–8.

Charline Grenier, Basile Sauvage, J-M Dischler, and Sylvain Thery. 2022. Color-mapped
noise vector fields for generating procedural micro-patterns. In Computer Graphics
Forum, Vol. 41. Wiley Online Library, 477–487.

Pascal Guehl, Rémi Allegre, J-M Dischler, Bedrich Benes, and Eric Galin. 2020. Semi-
Procedural Textures Using Point Process Texture Basis Functions. Computer
Graphics Forum 39, 4 (2020), 159–171.

Eric Heitz and Fabrice Neyret. 2018. High-performance by-example noise using a
histogram-preserving blending operator. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 2 (2018), 1–25.

Yi-Hua Huang, Yan-Pei Cao, Yu-Kun Lai, Ying Shan, and Lin Gao. 2023. NeRF-
Texture: Texture Synthesis with Neural Radiance Fields. In ACM SIGGRAPH 2023
Conference Proceedings (Los Angeles) (SIGGRAPH ’23). Association for Computing
Machinery, New York, NY, USA, Article 43, 10 pages. doi:10.1145/3588432.3591484

Yi-Hua Huang, Yan-Pei Cao, Yu-Kun Lai, Ying Shan, and Lin Gao. 2024. NeRF-Texture:
SynthesizingNeural Radiance Field Textures. IEEE Transactions on PatternAnalysis
and Machine Intelligence (2024), 1–15. doi:10.1109/TPAMI.2024.3382198

Daniel Hug and Rolf Schneider. 2024. PoissonHyperplane Tessellations. Springer Cham.
doi:10.1007/978-3-031-54104-9 Published: 24 May 2024, Hardcover. Softcover ISBN:
978-3-031-54106-3 (Due: 07 June 2025).

Pol Jeremias and Inigo Quilez. 2014. Shadertoy: learn to create everything in a fragment
shader. In SIGGRAPH Asia 2014 Courses. ACM. doi:10.1145/2659467.2659474

A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin,
and M. Zwicker. 2010. A Survey of Procedural Noise Functions. Computer Graphics
Forum 29, 8 (2010), 2579–2600. doi:10.1111/j.1467-8659.2010.01827.x

Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. 2009. Procedural
noise using sparse Gabor convolution. ACM Transactions on Graphics (TOG) 28, 3
(2009), 1–10.

John-Peter Lewis. 1984. Texture synthesis for digital painting. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques. 245–252.

John-Peter Lewis. 1989. Algorithms for solid noise synthesis. In Proceedings of the 16th
annual conference on Computer graphics and interactive techniques. 263–270.

Nicolas Lutz, Basile Sauvage, and Jean-Michel Dischler. 2021. Cyclostationary Gaussian
noise: theory and synthesis. In Computer Graphics Forum, Vol. 40. Wiley Online

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1111/cgf.14449
https://doi.org/10.1111/cgf.14449
http://www.jstor.org/stable/25683805
http://www.jstor.org/stable/25683805
https://doi.org/10.1145/3588432.3591484
https://doi.org/10.1109/TPAMI.2024.3382198
https://doi.org/10.1007/978-3-031-54104-9
https://doi.org/10.1145/2659467.2659474
https://doi.org/10.1111/j.1467-8659.2010.01827.x

Multi-Dimensional Procedural Wave Noise • 15

Library, 239–250.
Nicolas Lutz, Basile Sauvage, and Jean-Michel Dischler. 2023. Preserving the autocovari-

ance of texture tilings using importance sampling. In Computer Graphics Forum,
Vol. 42. Wiley Online Library, 347–358.

Arman Maesumi, Dylan Hu, Krishi Saripalli, Vladimir G. Kim, Matthew Fisher, Sören
Pirk, and Daniel Ritchie. 2024. One Noise to Rule Them All: Learning a Unified
Model of Spatially-Varying Noise Patterns. ACM Transactions on Graphics (TOG)
(2024). doi:10.1145/3658195

Werner Nagel, MECKE JOSEPH, Joachim Ohser, and Viola Weiss. 2008. A tessellation
model for crack patterns on surfaces. Image Analysis and Stereology 27 (06 2008).
doi:10.5566/ias.v27.p73-78

Ken Perlin. 1985. An image synthesizer. In Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association
for Computing Machinery, New York, NY, USA, 287–296. doi:10.1145/325334.325247

Ken Perlin. 2001. Noise Hardware. In Real-Time Shading SIGGRAPH Course Notes,
M. Olano (Ed.). Chapter 9.

Nico Pietroni, Paolo Cignoni, Miguel Otaduy, and Roberto Scopigno. 2010. Solid-
Texture Synthesis: A Survey. IEEE Comput. Graph. Appl. 30, 4 (jul 2010), 74–89.
doi:10.1109/MCG.2009.153

Georgios Sakas. 1993. Modeling and animating turbulent gaseous phenomena using
spectral synthesis. The Visual Computer 9 (1993), 200–212.

Bruce Schachter and Narendra Ahuja. 1979. Random pattern generation processes.
Computer Graphics and Image Processing 10, 2 (1979), 95–114.

Andrew Schneider. 2023. NUBIS3 Methods (and madness) to model and render immer-
sive real-time voxel-based clouds.. In Advances in Real-Time Rendering in Games
Course (SIGGRAPH ’23). Association for Computing Machinery, Los Angeles, USA.

Sheldon Taylor, Owen Sharpe, and Jiju Peethambaran. 2021. Prime gradient noise.
Computational Visual Media 7, 3 (Feb. 2021), 349–362. doi:10.1007/s41095-021-
0206-z

Thibault Tricard, Semyon Efremov, Cédric Zanni, Fabrice Neyret, Jonàs Martínez, and
Sylvain Lefebvre. 2019. Procedural phasor noise. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–13.

Jarke J Van Wijk. 1991. Spot noise texture synthesis for data visualization. In
Proceedings of the 18th annual conference on Computer graphics and interactive
techniques. 309–318.

Steven Worley. 1996. A cellular texture basis function. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. 291–294.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3658195
https://doi.org/10.5566/ias.v27.p73-78
https://doi.org/10.1145/325334.325247
https://doi.org/10.1109/MCG.2009.153
https://doi.org/10.1007/s41095-021-0206-z
https://doi.org/10.1007/s41095-021-0206-z

	Abstract
	1 Introduction
	2 Related work
	3 Expected procedural noise properties
	4 Gaussian Solid Wave-noise
	4.1 Procedural noise from Hyperplanar wave functions
	4.2 Isotropic case
	4.3 Anisotropic case
	4.4 Designing solid wave noise from 2D noise images

	5 Wave noise in other dimensions
	5.1 2D noise
	5.2 4D and higher dimensional noises
	5.3 Time-varying wave noise

	6 Extension to Non-Gaussian wave noises
	6.1 Phasor and Ridged noises
	6.2 Crystal-like and Wired noises
	6.3 Cellular noise

	7 Results and Evaluation
	7.1 Applications
	7.2 Implementation and performances
	7.3 Model parameters
	7.4 Comparison with previous models
	7.5 Limitations

	8 Conclusion
	References

