

¹LIX, Ecole Polytechnique, CNRS, IP Paris, France ²ICube, Université de Strasbourg, CNRS, France ³Université de Sherbrooke, Canada

MOTIVATION

PROCEDURAL NOISE

- Fundamental tool in computer graphics for texturing and modeling (e.g. Perlin noise, 1985).
- Enhances realism by adding fine details and visual complexity.
- Core component of procedural texture/material
 tools (e.g. Substance Designer, Mari).

MOTIVATION

Example of spectral control

LIMITATIONS OF CURRENT NOISE MODELS

- Spectral control (i.e. shaping frequency content) is a key feature of noise.
- Too expensive in higher dimensions, especially for real-time graphics.
- Difficult to animate volumetric noise while keeping spectral control.

Need for a more efficient, compact, and flexible model.

CONTEXT RELATED WORK

Sparse convolution J-P. Lewis 1984, 1989

Point Process

Kernel

Noise

Gabor noise Lagae et al. 2009

Kernel

SPARSE CONVOLUTION

- Introduced by Lewis (1984, 1989): convolution of a point process with a kernel.
- Strength: spectral control when using Gabor kernels (Gabor noise, Phasor noise).
- Weakness: high computational cost because of required high sampling in spatial (nb points) and frequency domains (frequency range).

Phasor noise
Tricard et al.
2019

CONTEXT RELATED WORK

LRP noise

Gilet et al. 2014

FOURIER SERIES

- LRP noise (Gilet et al. 2014)
- Strength: better phase control.
- Weakness: same as sparse convolution noises, and only 2D.

None of these noises propose animation keeping the spectral properties.

CONTRIBUTION

OUR PROCEDURAL WAVE NOISE MODEL

- Spectral control
- Very fast GPU implementation.
- Better scaling in higher dimensions (3D+t).
- Supports animation.
- New non-Gaussian patterns.

Artistic image from Leopard (Adobe Stock | ID #1262080227)

Plane wave

INSPIRATION

- White noise is inspired by white light
- Superpositions of randomly oriented waves of all frequency contents, defined as a continuous sum in the frequency and orientation domains.

$$\mathcal{N}(\mathbf{x},t) = \frac{1}{F} \int_{\mathbb{R}^n} A(\xi) e^{i(2\pi \xi \cdot \mathbf{x} + \phi(\xi) - ct)} d\xi$$

$$= \frac{1}{F} \int_{\Omega} \int_{0}^{\infty} A(f\omega) e^{i(2\pi f \mathbf{x} \cdot \omega - ct + \phi(f\omega))} |\mathcal{J}(f\omega)| df d\omega,$$

$$|\mathcal{J}(f\omega)| = \mathcal{J}_f(f) \mathcal{J}_{\omega}(\omega)$$

Our key strategy: fast separable computation => mix precomputation and sampling!

WAVE-BASED MODEL

Frequency domain: precomputation!

$$\int_{\Omega} \int_{0}^{\infty} A(f\omega) e^{i(2\pi f \mathbf{x} \cdot \omega - ct + \phi(f\omega))} |\mathcal{J}(f\omega)| \, df \, d\omega,$$

$$|\mathcal{J}(f\omega)| = \mathcal{J}_f(f) \, \mathcal{J}_{\omega}(\omega)$$

- Managing **amplitude distributions** $A(\xi)$ (similar to Gabor kernels).
- **Random phases** (ϕ) imitates Gaussian processes.
- Lower cost: Precomputed 1D wave profile (compact data on GPU).

Nb directions: 4, 30, 60

Orientation domain: Monte-Carlo sampling

$$\int_{\Omega} \int_{0}^{\infty} A(f\omega) e^{i(2\pi f \mathbf{x} \cdot \omega - ct + \phi(f\omega))} |\mathcal{J}(f\omega)| df d\omega,$$

$$|\mathcal{J}(f\omega)| = \mathcal{J}_f(f) \mathcal{J}_{\omega}(\omega)$$

ISOTROPY

Sample direction space Ω uniformly in N directions
 (one 1D profile, but randomly oriented and shifted waves).

ANISOTROPY

 Use different amplitudes (hence waves) for different directions (storing more 1D profiles).

COMPATIBLE WITH BY-EXAMPLE SYNTHESIS

- Frequency domain: difficult to design manually.
- Propose a by-example approach to generate 3D noise using a 2D noise image as input.
- Optimize amplitudes to minimize spectral error of 2D slices.

ALIGNMENT ARTEFACTS REDUCTION

- Partition space into regular slices orthogonal to waves (and sample random wave orientations around).
- **Blending** to smoothly interpolate wave values across slice boundaries: removes visible discontinuities.
- Jittering to randomly shift slice positions (irregular slices): adds variability and avoids repetitive patterns.

PHASOR AND RIDGED NOISES

- Solid wave noise is complex valued.
- Use real, imaginary, modulus or phase.

CRYSTAL-LIKE AND WIRED NOISES

- Arbitrary spatial waves.
- Examples: using local intensity peaks.

NEW CELLULAR NOISES

- Substitute the sum of waves with another operator (different from Worley noise): min, triangular, step, etc.
- Use stochastic iterative cell subdivision, imitating STIT patterns (STable with respect to ITerations of tessellations).

RESULTS ANISOTROPY

RESULTS

SMOOTH TRANSITIONS

- Linear interpolation.
- Noise smoothly evolves across the volume, from one cube corner to the opposite (not just across faces).
- Examples: variations of frequency range, frequency content and anisotropy, etc.

RESULTS

GENERATING VOLUMETRIC DATA

- Structured or unstructured micro-material.
- **Transfer functions** for colors and transparency.

RESULTS MIXING STYLES DRIVEN BY WAVE NOISE

RESULTS PBR MATERIALS GENERATION

SEMI-PROCEDURAL TEXTURES

• to guide color/material *details* by our wave noise *structure*.

GUEHL ET AL. 2020

WAVE NOISES

MATERIALS

RESULTS TEXTURING

3D TEXTURING

- Style Transfer Functions.
- No need for UV coordinates (rasterization).

RESULTS TEXTURING

VIDEO

RESULTS ANIMATION

GENERATION OF ANIMATED MATERIAL (3D+T)

Keyframe animations: lack realism since features merely fade in and out without undergoing any structural changes.

3D+t *(time)* **noise**: introduce **local temporal variations**, enabling features to not only fade in and out but also evolve dynamically.

RESULTS PERFORMANCE

3D Textures	Perlin Noise	Worley Noise	Gabor Noise			Wave Noise		
	(fractal)	(fractal)					3D/3D+t/4D	
			10 Kernels	50 Kernels	90 Kernels	10 Dir	50 Dir	100 Dir
25	5.6	15.15	40.86	175.86	315.2	2.6/2.74/7.45	11/11.7/25.8	22/23.3/44.6
51 _€	44	131	311.3	1 438	2 584	20.8/22/53.1	88.1/93.2/206.6	175/185.6/361.3
10	346	1 047	2 552	116 000	206 000	167/176.4/429	706/749.6/1 719	1 410/1 502/2 970
2D Te res								
10	0.328	0.94	2.23	11.0	22.12	0.14	0.62	1.28
20 iAi	0.92	2.75	6.37	32.9	61.9	0.39	1.82	3.72

- Competitive with Perlin fractal noise but better spectral control.
- Significantly faster than Gabor noise at equivalent spectral quality.
- Better scaling in higher dimensions (animation and 4D).

CONCLUSION

MULTI-DIMENSIONAL PROCEDURAL WAVE NOISE

- New procedural noise model: superposition of randomly oriented hyperplanar waves with random phases.
- Spectral control.
- Reproduces existing gaussian noises, while preserving essential procedural properties (infinite extent, resolution independence, and fast GPU implementation), with both isotropy and anisotropy.
- Better scales to 3D, 3D+T, and even higher dimensions all with minimal data and low memory usage.
- Supports animation (local temporal variations).
- More general: variety of non-Gaussian noises with new recursive cellular patterns but spectral control difficult (future work!)

MULTI-DIMENSIONAL PROCEDURAL WAVE NOISE

PASCAL GUEHL

RESEARCH ENGINEER (PHD)

Ecole Polytechnique, France

P. Guehl¹, R. Allègre², G. Gilet³, B. Sauvage², M-P. Cani¹, J-M. Dischler²

¹LIX, Ecole Polytechnique, CNRS, IP Paris, France ²ICube, Université de Strasbourg, CNRS, France ³Université de Sherbrooke, Canada