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MOTIVATION
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PROCEDURAL NOISE
* Fundamental tool in computer graphics for texturing

and modeling (e.q. Perlin noise, 1985).

* Enhances realism by adding fine details and visual
complexity.

« Core component of procedural texture/material
tools (e.g. Substance Designer, Mari).




MOTIVATION o

Example of spectral control LIMITATIONS OF CURRENT NOISE MODELS

- Spectral control (i.e. shaping frequency content)
is a key feature of noise.

- Too expensive in higher dimensions, especially
for real-time graphics.

- Difficult to animate volumetric noise while
keeping spectral control.

Need for a more efficient, compact, and flexible model.
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CONTEXT

RELATED WORK

Point Process Kernel Noise SPARSE CONVOLUTION

Sparse convolution

J-P. Lewis
1984, 1989 * Introduced by Lewis (1984, 1989): convolution
of a point process with a kernel.

Gabor noise - Strength: spectral control when using Gabor
;3836 otal kernels (Gabor noise, Phasor noise).

* Weakness: high computational cost because of
m required high sampling in spatial (nb points) and
Kernel frequency domains (frequency range).
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CONTEXT

RELATED WORK

LRP noise
Gilet et al.

2014 FOURIER SERIES

.- | - LRP noise (Gilet et al. 2014)

« Strength: better phase control.

* Weakness: same as sparse convolution noises,
and only 2D.

None of these noises propose animation keeping
the spectral properties.
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CONTRIBUTION

OUR PROCEDURAL WAVE NOISE MODEL

Spectral control

Very fast GPU implementation.

Better scaling in higher dimensions (3D+t).

Supports animation.

New non-Gaussian patterns.




CORE FEATURES

GAUSSIAN NOISES




CORE FEATURES

GAUSSIAN NOISES

INSPIRATION

- White noise is inspired by white light

* Superpositions of randomly oriented waves of
all frequency contents, defined as a continuous
sum in the frequency and orientation domains.

Artistic image from Leopard (Adobe Stock | ID #1262080227)

N(xt) = % / A(E)el2rEx+d(§)=et) g
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’ T (fo)l = T¢(f) T ()

Our key strategy: fast separable computation => mix precomputation and sampling!




CORE FEATURES

GAUSSIAN NOISES

Amplitudes distribution (per frequency) WAVE-BASED MODEL

1D profile (wave)

Oriented wave (3D) ﬁ

”””“"||||||||""[ ﬁ | Frequency domain : precomputation!
| I TTTTTT T | i

] Aot omenston 7 (o) dfdo.
- JQIJO

T (fo)l =T (f) o (w)

Managing amplitude distributions A(¢)
(similar to Gabor kernels).

Random phases (¢) imitates Gaussian processes.

Lower cost: Precomputed 1D wave profile

Intensity (compact data on GPU).




CORE FEATURES

GAUSSIAN NOISES

Nb directions: 4, 30, 60 - Sample direction space Q uniformly in N directions
(one 1D profile, but randomly oriented and shifted waves).

Orientation domain: Monte-Carlo sampling

Al " A(fw)el @rfxe=ct(fo) | 7 (£o)|dfde
Q

0
T (fo)l = Tr(f) To(w)

ISOTROPY

x g.ullllllllll

/N ‘ ANISOTROPY
I i ~ -+ Use different amplitudes (hence waves) for

N different directions (storing more 1D profiles).
- _,""""I""""ll!llln ......




CORE FEATURES

GAUSSIAN NOISES

2D example Output: 2D slice
COMPATIBLE WITH BY-EXAMPLE SYNTHESIS

* Frequency domain: difficult to design manually.

* Propose a by-example approach to generate 3D
noise using a 2D noise image as input.

* Optimize amplitudes to minimize spectral error of 2D
slices.

3D Output




CORE FEATURES

GAUSSIAN NOISES

ALIGNMENT ARTEFACTS REDUCTION

 Partition space into regular slices orthogonal to waves
(and sample random wave orientations around).

* Blending to smoothly interpolate wave values across
slice boundaries: removes visible discontinuities.

- Jittering to randomly shift slice positions (irregular
slices): adds variability and avoids repetitive patterns.




CORE FEATURES

NON-GAUSSIAN NOISES




CORE FEATURES

NON-GAUSSIAN NOISES

PHASOR AND RIDGED NOISES

+ Solid wave noise is complex valued.

« Use real, imaginary, modulus or phase.




CORE FEATURES

NON-GAUSSIAN NOISES

CRYSTAL-LIKE AND WIRED NOISES

- Arbitrary spatial waves.

- Examples: using local intensity peaks.




CORE FEATURES

NON-GAUSSIAN NOISES

NEW CELLULAR NOISES

- Substitute the sum of waves with another
operator (different from Worley noise): min,
triangular, step, etc.

» Use stochastic iterative cell subdivision,
imitating STIT patterns (STable with respect to
ITerations of tessellations).
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RESULTS
ANISOTROPY




RESULTS

SMOOTH TRANSITIONS

 Linear interpolation.

* Noise smoothly evolves across the volume, from one
cube corner to the opposite (not just across faces).

- Examples: variations of frequency range, frequency
content and anisotropy, etc.



RESULTS

GENERATING VOLUMETRIC DATA
« Structured or unstructured micro-material.

» Transfer functions for colors and transparency.




RESULTS

MIXING STYLES DRIVEN BY WAVE NOISE

‘ MIXED OUTPUT
—
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RESULTS
PBR MATERIALS GENERATION

N

SEMI-PROCEDURAL TEXTURES * to guide color/material details by our wave noise structure.
GUEHL ET AL. 2020

MATERIALS




RESULTS

TEXTURING

3D TEXTURING

- Style Transfer Functions.

* No need for UV coordinates (rasterization).




RESULTS
TEXTURING




RESULTS

ANIMATION

GENERATION OF ANIMATED MATERIAL (3D+T)

Keyframe animations: lack realism since features 3D+t (time) noise: introduce local temporal
merely fade in and out without undergoing any variations, enabling features to not only fade in and
structural changes. out but also evolve dynamically.
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RESULTS

PERFORMANCE

3D Textures | Perlin Noise | Worley Noise Gabor Noise Wave Noise
(fractal) (fractal) 3D/3D+t/4D
10 Kernels 50 Kernels 90 Kernels 10 Dir 50 Dir 100 Dir
5.6 15.15 40.86 175.86 315.2 2.6/2.74/7.45 11/11.7/25.8 22/23.3/44.6
44 131 311.3 14338 2 534 20.8/22/53.1 88.1/93.2/206.6 175/185.6/361.3
346 1047 2 352 116 000 206 000 167/176.4/429 706/749.6/1 719 1 410/1 502/2 970
0.328 0.94 2.23 11.0 22.12 0.14 0.62 1.28
2.75 61.9 1.82 3.72

0.92

6.37

32.9

0.39

- Competitive with Perlin fractal noise but better spectral control.

- Significantly faster than Gabor noise at equivalent spectral quality.

- Better scaling in higher dimensions (animation and 4D).
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CONCLUSION

MULTI-DIMENSIONAL PROCEDURAL WAVE NOISE

* New procedural noise model: superposition of randomly oriented hyperplanar waves with random phases.

« Spectral control.

* Reproduces existing gaussian noises, while preserving essential procedural properties (infinite extent,
resolution independence, and fast GPU implementation), with both isotropy and anisotropy.

- Better scales to 3D, 3D+T, and even higher dimensions — all with minimal data and low memory usage.
« Supports animation (local temporal variations).

- More general: variety of non-Gaussian noises with new recursive cellular patterns — but spectral control
difficult (future work!)
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