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PROCEDURAL NOISE

MOTIVATION



PROCEDURAL NOISE

• Fundamental tool in computer graphics for texturing 

and modeling (e.g. Perlin noise, 1985).

• Enhances realism by adding fine details and visual 

complexity.

MOTIVATION
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• Core component of procedural texture/material 

tools (e.g. Substance Designer, Mari).



LIMITATIONS OF CURRENT NOISE MODELS

• Spectral control (i.e. shaping frequency content) 

is a key feature of noise.

• Too expensive in higher dimensions, especially 

for real-time graphics.

• Difficult to animate volumetric noise while 

keeping spectral control.

MOTIVATION
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Need for a more efficient, compact, and flexible model.

Example of spectral control



RELATED WORK

CONTEXT



SPARSE CONVOLUTION

• Introduced by Lewis (1984, 1989): convolution 

of a point process with a kernel.

CONTEXT

RELATED WORK

©  2 0 2 5  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D . 6

Phasor noise

Tricard et al.

2019

Sparse convolution 

J-P. Lewis

1984, 1989

Point Process Kernel Noise

• Strength: spectral control when using Gabor 

kernels (Gabor noise, Phasor noise).

• Weakness: high computational cost because of 

required high sampling in spatial (nb points) and 

frequency domains (frequency range).

Gabor noise

Lagae et al.

2009

Kernel



FOURIER SERIES

• LRP noise (Gilet et al. 2014)

• Strength: better phase control.

• Weakness: same as sparse convolution noises, 

and only 2D.

None of these noises propose animation keeping 

the spectral properties.

CONTEXT

RELATED WORK
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LRP noise 

Gilet et al.

2014



CONTRIBUTION



OUR PROCEDURAL WAVE NOISE MODEL

CONTRIBUTION
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• Spectral control

• Very fast GPU implementation.

• Better scaling in higher dimensions (3D+t).

• Supports animation.

• New non-Gaussian patterns.



GAUSSIAN NOISES

CORE FEATURES



INSPIRATION

• White noise is inspired by white light

• Superpositions of randomly oriented waves of 

all frequency contents, defined as a continuous 

sum in the frequency and orientation domains.

CORE FEATURES

GAUSSIAN NOISES
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Artistic image from Leopard (Adobe Stock | ID #1262080227)

Our key strategy: fast separable computation => mix precomputation and sampling!

Plane wave



WAVE-BASED MODEL

CORE FEATURES

GAUSSIAN NOISES

• Managing amplitude distributions ()          

(similar to Gabor kernels).
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1D profile (wave)

Amplitudes distribution (per frequency)

Oriented wave (3D)

Intensity

• Lower cost: Precomputed 1D wave profile 

(compact data on GPU).

• Random phases () imitates Gaussian processes.

Frequency domain : precomputation!



ISOTROPY

CORE FEATURES

GAUSSIAN NOISES
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• Sample direction space  uniformly in N directions  

(one 1D proflle, but randomly oriented and shifted waves).

Nb directions: 4, 30, 60

ANISOTROPY

• Use different amplitudes (hence waves) for 

different directions (storing more 1D profiles).

Orientation domain: Monte-Carlo sampling



COMPATIBLE WITH BY-EXAMPLE SYNTHESIS

CORE FEATURES

GAUSSIAN NOISES

• Frequency domain: difficult to design manually.
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• Propose a by-example approach to generate 3D 

noise using a 2D noise image as input.

• Optimize amplitudes to minimize spectral error of 2D 

slices.

2D example

3D Output

Output: 2D slice



ALIGNMENT ARTEFACTS REDUCTION

• Partition space into regular slices orthogonal to waves 

(and sample random wave orientations around).

CORE FEATURES

GAUSSIAN NOISES
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• Blending to smoothly interpolate wave values across 

slice boundaries: removes visible discontinuities.

• Jittering to randomly shift slice positions (irregular 

slices): adds variability and avoids repetitive patterns.



NON-GAUSSIAN NOISES

CORE FEATURES



PHASOR AND RIDGED NOISES

CORE FEATURES

NON-GAUSSIAN NOISES

• Solid wave noise is complex valued.

• Use real, imaginary, modulus or phase.

©  2 0 2 5  S I G G R A P H .  A L L  R I G H T S  R E S E R V E D . 17



CRYSTAL-LIKE AND WIRED NOISES

CORE FEATURES

NON-GAUSSIAN NOISES

• Arbitrary spatial waves.
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• Examples: using local intensity peaks.



NEW CELLULAR NOISES

CORE FEATURES

NON-GAUSSIAN NOISES

• Substitute the sum of waves with another 

operator (different from Worley noise): min, 

triangular, step, etc.
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• Use stochastic iterative cell subdivision, 

imitating STIT patterns (STable with respect to 

ITerations of tessellations).



TEXTURING

RESULTS



RESULTS

ANISOTROPY
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SMOOTH TRANSITIONS

• Linear interpolation.

• Noise smoothly evolves across the volume, from one 

cube corner to the opposite (not just across faces).

• Examples: variations of frequency range, frequency 

content and anisotropy, etc.

RESULTS



RESULTS
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GENERATING VOLUMETRIC DATA

• Structured or unstructured micro-material.

• Transfer functions for colors and transparency.

VIDEO



RESULTS

MIXING STYLES DRIVEN BY WAVE NOISE
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WAVE NOISE

MATERIAL #1

MATERIAL #2

MIXED OUTPUT



• to guide color/material details by our wave noise structure.

RESULTS

PBR MATERIALS GENERATION
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SEMI-PROCEDURAL TEXTURES

GUEHL ET AL. 2020

WAVE NOISES

MATERIALS



3D TEXTURING

• Style Transfer Functions.

• No need for UV coordinates (rasterization).

RESULTS

TEXTURING
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RESULTS

TEXTURING
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VIDEO



RESULTS

ANIMATION
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Keyframe animations: lack realism since features 

merely fade in and out without undergoing any 

structural changes.

3D+t (time) noise: introduce local temporal 

variations, enabling features to not only fade in and 

out but also evolve dynamically.

GENERATION OF ANIMATED MATERIAL (3D+T)

VIDEO



RESULTS

PERFORMANCE
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• Competitive with Perlin fractal noise but better spectral control.

• Significantly faster than Gabor noise at equivalent spectral quality.

• Better scaling in higher dimensions (animation and 4D).



CONCLUSION



MULTI-DIMENSIONAL PROCEDURAL WAVE NOISE

CONCLUSION
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• New procedural noise model: superposition of randomly oriented hyperplanar waves with random phases.

• Spectral control.

• Reproduces existing gaussian noises, while preserving essential procedural properties (infinite extent, 

resolution independence, and fast GPU implementation), with both isotropy and anisotropy.

• Better scales to 3D, 3D+T, and even higher dimensions — all with minimal data and low memory usage.

• Supports animation (local temporal variations).

• More general: variety of non-Gaussian noises with new recursive cellular patterns — but spectral control 

difficult (future work!)
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